To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Native American quillwork is well documented in art historical and anthropological literature. Methods for folding quills to create floral and abstract designs are addressed, but studies of the materials used to color the quills are conspicuously absent. This is particularly true for the pre-aniline dyes used by communities east of the Mississippi, as historical recipes tend to be more reflective of Plains and Pacific Northwest quillwork traditions. Research to derive quill dye baths from raw materials has and continues to be pursued, but no large-scale scientific analysis of existing quillwork has previously been undertaken. To address this literature gap, a liquid chromatography-mass spectrometry analysis project has been completed on early quillwork in the collections of the McCord Museum, the National Museum of the American Indian, and the Peabody Museum of Archaeology and Ethnology; reflectance spectroscopy and X-ray fluorescence were also used as complementary techniques and to investigate the use of metal salts as quill stains. An extensive literature review provides a historical understanding of pre-1856 quillwork dyes; this representation will be compared with the usage patterns suggested by the collections’ analysis. A more complete understanding of Native dye technology, addressing assumptions currently made with regards to the use of mordants, mixing of multiple dyestuffs in a single bath, and incorporation of “Old World” dyes, will also be presented.
Powder polymer processing techniques were evaluated as a means to generate homogeneous immiscible polymer blends without the high residence times at elevated temperature and high shear rates required by extrusion. Using emulsion polymerized and cryogenically jet pulverized PMMA and HDPE powder precursors, blends were prepared with morphologies comparable to extruded blends. Advanced EDS imaging methods combined with SiO2 marker spheres enhanced electron imaging and analysis of all blend phases. These processing methods will be useful in producing polymer blends from fragile polymers, such as those used in biomedical applications, that cannot tolerate the temperature or shear rates of conventional melt processing.
Printing of functional materials requires reliable deposition processes. This work describes the development of printing processes for selected functional materials utilizing industrial-type inkjet printheads. A well-controlled printing process with fluids containing the conductive polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is presented, allowing linear printing speeds of up to 0.35 m/s in single-pass, and smallest line width of approximately 40 μm when printing 7 pL drop volumes. In addition reliable processes for producing ZnO-based films, which enable novel applications for electronic and UV-sensitive devices, and for printing of conductive carbon nanotube layers are shown.
The facile bottom-up fabrication of a perfect preferentially-oriented MOF nanofilm, NAFS-1 on a solid surface, which is endowed with highly crystalline order both in the out-of-plane and in-plane orientations to the substrate, as determined by synchrotron X-ray surface crystallography, was achieved by the unique combination of a layer-by-layer growth technique coupled with the Langmuir-Blodgett (LB) method.
The space charge region width of the Schottky barrier that forms on the interface between aluminum and organic semiconductor polymer of bulk-heterojunction organic photodiodes has been investigated according to reverse voltage bias over the device and the capacitance-voltage characteristics. Here, we investigated the space charge region widths according to incident light power. Comparison of the mathematical models and experimental data measured under different light power indicate that effect of light on the space charge region of photodiodes is similar to the effect of base-emitter voltage on the space charge region of base-emitter junction in bipolar junction transistors.
Carbon nanotubes (CNTs) exhibit liquid crystalline order and their nematic director couples to the one of low molecular weight liquid crystals. Here we explore the interactions between CNTs and the smectic liquid crystal phase of a polymer and the possibility for a similar coupling in this system. Isotactic Polypropylene (iPP) and iPP/CNTs nanocomposites were made in solution with varying CNT concentrations and hot pressed into 50-100μm thick films. The pure iPP and iPP/CNT films were then sheared at one rotation per second in the melt state. Shearing continued as the temperature was decreased from 200°C to 145°C to induce a smectic liquid crystal phase. The sheared samples were analyzed using polarized optical microscopy, Two Dimensional Microscopic Transmission Ellipsometry (2D-MTE) and Two Dimensional Wide Angle X-Ray Scattering (2D-WAXS). During shearing we detected a sudden increase of birefringence at 151°C in the samples, higher than the iPP crystallization temperature, indicating liquid crystalline ordering. The samples were then crystallized at 135°C for 30 minutes. We measured anisotropic 2D-WAXS patterns of the samples that contained CNTs, indicating strong ordering of the crystals. Upon reheating, we measured birefringence at temperatures higher than the melting endotherm for the iPP crystals, using polarized microscopy, which indicates that some smectic order still persists in the samples, even after crystallization and complete melting of all crystals. Our results indicate that CNTs couple to the smectic phase of iPP, improve its order upon shearing and the crystals created after the formation of the oriented smectic phase are strongly aligned parallel to the direction of shearing.
We present a thermodynamic study of selected transition metals (TM=Cr, Mn, Fe and Co) solubility in ZnO based on the assessment of available thermodynamic data and ab-initio calculations in the respective TM-Zn-O systems. The ab-initio DFT calculations of enthalpies of formation of the involved phases and the energies of substitution defect (TM-Zn) formation were performed using the full-potential APW+lo technique (WIEN2k code) within GGA+U approximation. The calculated energies of mixed oxides and virtual (unstable) TMO end-members of (Zn,TM)O solid solutions are referred to well established thermodynamic data of binary oxides taken from SGTE database. The assessed thermodynamic data are subsequently used for calculation of phase equilibria and construction of the respective pO2-T-x phase (FactSage software). Whereas the solubility of Mn, Fe, and Co in ZnO is found not to exceed 1 mol% at low temperatures (T<900°C), the homogeneity range is substantially enlarged at elevated temperatures (~10 mol% at the eutectic temperature). By contrast, the solubility of Cr turned out to be negligible in the relevant range of T and pO2.
Since the beginning of the 20th century, titanium dioxide (titania, TiO2) has essentially been commercialized as white powder pigment. But, titania, as one of the most efficient photocatalysts, is also used in many other applications, such as photodegradation of pollutants and photocatalytic water splitting. Moreover, titania is a semiconductor and is used as gas sensing material. Nanosized titania particles (nano-TiO2) are preferred over conventional particles in applications where greater surface area, higher reactivity, and quantum confinement effects matter. For example, in the field of clean energy, acceptable energy conversion efficiencies for dye-sensitized solar cells (DSSCs) can only be achieved with nanostructured semiconductors, and particularly with nanostructured titania. Research on DSSCs based on nano-TiO2 has been extensively pursued, and the number of papers and patents published in this area has grown exponentially over the last ten years. However, at present, commercial devices are produced in limited quantities and small sizes, and address niche markets. Research efforts have largely focused on the optimization of the dye, but recently the TiO2 electrode itself has attracted more attention. It has been shown that particle size and shape, crystallinity, surface morphology and chemistry of the TiO2 material are key parameters to be controlled for optimized performance of the solar cell. After an overview of the state-of-the-art on nano-TiO2 for application in DSSCs and the commercial potential of these devices, our approach to the control of the nano-TiO2 surface chemistry for improvement of the DSSC performance is briefly introduced.
Recently, several experiments and theoretical studies demonstrated the possibility of tuning or modulating band gap values of nanostructures composed of bi-layer graphene, bi-layer hexagonal boron-nitride (BN) and hetero-layer combinations. These triple layers systems present several possibilities of stacking. In this work we report an ab initio (within the formalism of density functional theory (DFT)) study of structural and electronic properties of some of these stacked configurations. We observe that an applied external electric field can alter the electronic and structural properties of these systems. With the same value of the applied electric field the band gap values can be increased or decreased, depending on the layer stacking sequences. Strong geometrical deformations were observed. These results show that the application of an external electric field perpendicular to the stacked layers can effectively be used to modulate their inter-layer distances and/or their band gap values.
Simulations of directional solidification of binary peritectic TiAl alloys through ceramic preforms consisting of narrow straight channels with spacings on the order of the dendritic tip radius were performed with a modified cellular automaton coupled to a finite volume calculation of solute diffusion. Depending upon the channel spacing, the microstructure may be refined after dendritic growth through the preform. As the channel width decreases, the lateral solute diffusion in the liquid is more constrained, changing the morphology of the primary phase from dendritic to cellular. In narrow channels, the liquid concentration gradient ahead of the solid/liquid interface decreases resulted in lower growth velocities and higher undercoolings. For hypo-peritectic TiAl alloys, growth conditions that lead to growth of β dendrites can result in α nucleation and growth in narrow channels due to the geometric constraint on solute diffusion.
A channel layer substitution of a wider bandgap AlGaN for a conventional GaN in high electron mobility transistors (HEMTs) is an effective method of enhancing the breakdown voltage. Wider bandgap AlGaN, however, should also increase the ohmic contact resistance. Si ion implantation doping technique was utilized to achieve sufficiently low resistive source/drain contacts. The fabricated AlGaN channel HEMTs with the field plate structure demonstrated good pinch-off operation with sufficiently high drain current density of 0.5 A/mm without noticeable current collapse. The obtained maximum breakdown voltages was 1700 V in the AlGaN channel HEMT with the gate-drain distance of 10 μm. These remarkable results indicate that AlGaN channel HEMTs could become future strong candidates for not only high-frequency devices such as low noise amplifiers but also high-power devices such as switching applications.
The pressure-temperature (p-T) phase diagram of NH3BH3 has been investigated by thermal conductivity measurements up to 1.5 GPa at temperatures between 100 and 300 K, and the phase boundaries between the three known structural phases have been identified. The transformation between the room temperature tetragonal I4mm phase and the low temperature orthorhombic Pmn21 phase (Tc = 218 K at p = 0) shows only a small hysteresis. The transformation into the high pressure orthorhombic Cmc21 phase (at 1.0 GPa near 292 K) has a very strong hysteresis, up to Δp = 0.5 GPa, and below 230 K a fraction of this phase is metastable even at atmospheric pressure.
PbTiO3-covered ZnO nanorods were grown on Al2O3 by metalorganic chemical vapor deposition (MOCVD), and their crystalline orientation was investigated by x-ray diffraction (XRD). Structural analysis by scanning electron microscopy and XRD revealed that the hexagonal ZnO nanorods had -side facets. XRD analysis of PbTiO3 thin films on ZnO/Al2O3revealed that PbTiO3 was epitaxially grown on ZnO, showing 6 variants of crystallites with the c-axis tilted either 27o or 69o from the surface normal to the ZnO plane. Effective piezoelectric coefficients calculated for the 27o and 69o-crystallites using piezoresponse force microscopy confirm that deformation of nanorods and nanotubes contributed to the large electrically-induced strain along the radial direction.
The Athlit ram, a bronze warship ram from a 2nd Century BCE Roman-era galley, was found in 1980 off the coast of Israel at Athlit, and is now displayed at the National Maritime Museum, Haifa, Israel. It meant to fit on the prow of a medium-sized oared warship. This ram is the only known surviving example of this ancient naval weapon. Inside the bronze ram some of the ship’s wood is still preserved. We have recently studied a piece of the ram removed during early conservation. Remnant metal, corrosion products, and mineralized and pseudomorphed wood have all been found and examined by light optical metallography, x-ray diffraction, scanning electron microscopy, and microanalysis using energy dispersive x-ray mapping. The main corrosion product on the Athlit Ram is identified as covellite (CuS), and the entrained material is pseudomorphed cedar wood. Analysis indicates the lumen to be replaced by calcium carbonate and the cell walls to be replaced by covellite, consistent with the matrix.
In this study, the exothermic DSC peaks observed in rapidly-solidified Fe-44.9at.%Al ribbons and water-quenched Fe-48.5at.%Al single crystals were analyzed by Matusita’s method in order to discuss the kinetics of the agglomeration processes of supersaturated vacancies. Both the nucleation and morphological factors, n and m, respectively were approximately 3 for the rapidly solidified ribbons and were approximately 2 for the water-quenched single crystals. Based on the Matusita’s idea, the m values suggest the growth of 3-dimensional voids in the rapidly solidified ribbons and the growth of 2-dimensional dislocations loops in the single crystals due to the agglomeration of supersaturated vacancies. In addition, the n values suggest that the nuclei of voids and dislocation loops existed in as-quenched samples. These interpretations are in good agreement with the results of TEM observations.
We use a state-of-the-art non-equilibrium quantum transport simulation code, NEMO-1D, to address the device physics and performance benchmarking of cross-plane superlattice Peltier coolers. Our findings show quantitatively how barriers in cross-plane superlattices degrade the electrical performance, i.e. power factor. The performance of an In0.53Ga0.47As/In0.52Al0.48As cross-plane SL Peltier cooler is lower than that of either a bulk In0.53Ga0.47As or bulk In0.52Al0.48As device, mainly due to quantum mechanical effects. We find that a cross-plane SL device has a Seebeck coefficient vs. conductance tradeoff that is no better than that of a bulk device. The effects of tunneling and phase coherence between multi barriers are examined. It is shown that tunneling, SL contacts, and coherency only produce oscillatory behavior of Seebeck coefficient vs. conductance without a significant gain in PF. The overall TE device performance is, therefore, a compromise between the enhanced Seebeck coefficient and degraded conductance.
A highly reproducible two-step anodization method is reported to fabricate anatase TiO2 nanotube layers. The nanotube membrane fabricated by this method is highly uniform and crack-free. Large area nanotube membranes can be transferred completely onto transparent FTO electrodes without the need for damaging ultrasonic agitation or acid treatment for application in front-illuminated nanotube-based dye-sensitized solar cells. A 16 μm thin front-illuminated nanotube-based dye-sensitized solar cell produced using this method reaches an efficiency of 6.3% under 1 sun illumination AM1.5.
We report our fabrication of pentacene field effect transistors (FETs) based on a vacuum processed and e-beam cured polymer electrolyte (i.e., tripropylene glycol diacrylate (TRPGDA)) as a gate dielectric layer on flexible wide web substrates. The deposition of the semiconductor and gate insulator layers is carried out in Oxford's roll-to-roll vacuum web processing facility and could be combined in-line with roll-to-roll pattern metallization. The aim of the work is to demonstrate the ability to create all-evaporated transistors, exploiting the kind of technologies at present extensively used in the food packaging industry, for example, in which all layers can be deposited at high web speeds. Ours is a room temperature and a solvent-free method with an ultrahigh deposition rate (web speeds in excess of 100 m/min are possible).
The performance of the pentacene and the polymer dielectric materials within devices was investigated, demonstrating (1) the ability to deposit good quality pentacene layers in the roll-to-roll environment and (2) the importance of the e-beam curing conditions of the dielectric layer on the performance of the organic FET devices. This deposition route creates a smooth, pin-hole-free dielectric layer as it is deposited onto the substrate as a monomeric liquid, before curing, and there is no mass-loss such as in solvent-based deposition processes. These devices have a 250 μm channel length and an aspect ratio of 16. No self-assembled monolayer (SAM) or other surface modification had been applied to the insulator layer to achieve these properties.
The tuning of the transistors' operating voltage and output characteristics was feasible through the ease of control of the polymer dielectric thickness achieving a threshold voltage of less than 10 V. On/off ratio in excess of 103, and mobility = 0.1 cm2V-1s-1 have been achieved.
The ability to integrate such a high deposition rate polymer process, into a single step, multilayer, vacuum deposition process with conventional vacuum deposition sources provides a possible route to low cost and large area electronic device processing.
Photosynthetic membrane proteins convert solar light into chemical energy ina significantly high efficiency. Up-to-date reports of the photosyntheticbacterium suggest that such effective light conversion is due to the energytransfer between two light-harvesting (LH) protein complexes that arepatterned in two dimensions. In this report, LH complex isolated from Rb. sphaeroides was immobilized onto a patterned goldsurface with self-assembled monolayers (SAMs) and lipid bilayers at two mainobjectives: (1) micron-scale patterning of LH complex, and (2) prevention ofquenching for pattern observation.