To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cluster ion beam processes which employ ions comprised of a few hundred to several thousand atoms are being developed into a new field of ion beam technology. The processes are characterized by low energy surface interaction effects, lateral sputtering phenomena and high-rate chemical reaction effects. This paper reviews the current status of studies of the fundamental cluster ion beam characteristics as they apply to nanoscale processing and present industrial applications. As new prospective applications, techniques are now being developed to employ cluster ions in surface analysis tools such as XPS and SIMS and to modify surfaces of bio-materials. Results related to these new projects will also be reviewed.
Using 0.5 ps pulses of 5.9 eV light to excite electron-hole concentrations varied up to 2x1020 e-h/cm3 corresponding to energy deposition within electron tracks, we measure dipole-dipole quenching rate constants K2 in SrI2 and CsI. We previously reported determination of K2 directly from the time dependence of quenched STE luminescence in CsI. The nonlinear quenching rate decreases rapidly within a few tens of picoseconds as the host excitation density drops below the Förster threshold. In the present work, we measure the dependence of integrated light yield on excitation density in the activated scintillators SrI2:Eu2+ and CsI:Tl+. The “z-scan” method of yield vs. irradiance is applicable to a wider range of materials, e.g. when the quenching population is not the main light-emitting population. Furthermore, because of using an integrating sphere and photomultiplier for light detection, the signal-to-noise is substantially better than the time-resolved method using a streak camera. As a result, both 2nd and 3rd orders of quenching (dipole-dipole and Auger) can be distinguished. Detailed comparison of SrI2 and CsI is of fundamental importance to help understand why SrI2 achieves substantially better proportionality than CsI in scintillator applications. The laser measurements, in contrast to scintillation, allow evaluating the rate constants of nonlinear quenching in a population which has small enough spatial gradient to suppress the effect of carrier diffusion.
Density functional theory (DFT) calculations and classical molecular dynamics (MD) simulations have been performed to gain insight into the difference in cycling behaviors between the ethylene carbonate (EC)-based and the propylene carbonate (PC)-based electrolytes in lithium-ion battery cells. DFT calculations for the ternary graphite intercalation compounds (Li+(S)iCn: S=EC or PC), in which the solvated lithium ion Li+(S)i (i=1~3) was inserted into a graphite cell, suggested that Li+(EC)iCn was more stable than Li+(PC)iCn in general. Furthermore, Li+(PC)3Cn was found to be energetically unfavorable, while Li+(PC)2Cn was stable, relative to their corresponding Li+(PC)i in the bulk electrolyte. The calculations also revealed severe structural distortions of the PC molecule in Li+(PC)3Cn, suggesting a rapid kinetic effect on PC decomposition reactions, as compared to decompositions of EC. In addition, MD simulations were carried out to examine the solvation structures at a high salt concentration: 2.45 mo kg-1. The results showed that the solvation structure was significantly interrupted by the counter anions, having a smaller solvation number than that at a lower salt concentration (0.83 mol kg-1). We propose that at high salt concentrations, the lithium desolvation may be facilitated due to the increased contact ion pairs, so that a stable ternary GIC with less solvent molecules can be formed without the destruction of graphite particles, followed by solid-electrolyte-interface film formation reactions. The results from both DFT calculations and MD simulations are consistent with the recent experimental observations.
Organic semiconducting oligomer – Pentacene, as a material and organic electronic devices based on it, are proposed here as total dose detectors for ionizing radiation. Pentacene, when exposed to ionizing radiation of γ – rays using Cobalt – 60 (60Co) radiation source, shows increase in the conductivity of the material which can be used as a sensing phenomenon for determining the dose of ionizing radiation. The change in material property was also verified using UV-visible (UV-VIS) spectrum for pentacene thin-films with rising absorption peaks at the oxidized positions in the wavelength. A pentacene resistor can be used as a detector, as the change in the conductivity of the pentacene film can be easily quantified by measuring the change in resistance of the pentacene resistor after different total radiation dose exposures. The experiments resulted in a sensitivity of 340 kΩ/Gy for a total 100 Gy radiation dose for the pentacene resistor. Furthermore, employing this simple electrical measurement technique for determining the dose of ionizing radiation and to improve the sensitivity of the sensor by transistor action, a pentacene based organic field effect transistor (OFET) was exposed to ionizing radiation. Change in OFF current (IOFF) of the OFET sensor with W/L = 19350 μm/100 μm, suggests a sensitivity of 21 nA/Gy for 100 Gy dose. Also, changes in various other parameters like threshold voltage, subthreshold swing, field effect mobility, number of interface states etc. can be extracted from the electrical characterizations which prove their usefulness as a detector for ionizing radiation.
This work addresses non-volatile memories based on metal-oxide polymer diodes. We make a thorough investigation into the static and dynamic behavior. Current-voltage characteristics with varying voltage ramp speed demonstrate that the internal capacitive double-layer structure inhibits the switching at high ramp rates (typical 1000 V/s). This behavior is explained in terms of an equivalent circuit.
It is also reported that there is not a particular threshold voltage to induce switching. Voltages below a particular threshold can still induce switching when applied for a long period of time. The time to switch is longer the lower is the applied voltage and follows an exponential behavior. This suggests that for a switching event to occur a certain amount of charge is required.
We present atomic force microscopy (AFM), Hall-effect measurement, and Raman spectroscopy results from graphene films on 6H-SiC (0001) and (000-1) faces (Si-face and C-face, respectively) produced by radiative heating in a high vacuum furnace chamber through thermal decomposition. We observe that the formation of graphene on the two faces of SiC is different in terms of the surface morphology, graphene thickness, Hall mobility, and Raman spectra. In general, graphene films on the SiC C-face are thicker with higher mobilities than those grown on the Si-face.
In recent years there has been a renewed interest in magnesium alloys forapplications as temporary biomedical implants because magnesium is bothbiocompatible and biodegradable. However, the rapid corrosion rate ofmagnesium in physiological environments has prevented its successful use fortemporary implants. Since alloying is one of the routes to slow downcorrosion, we report in this publication our investigation of Mg-Ti alloysfabricated by high-energy ball milling as possible materials forbiocompatible and biodegradable implants. Titanium was chosen mainly becauseof its proven biocompatibility and corrosion resistance. Corrosion testscarried out by immersing the Mg-Ti alloys in Hank’s Solution at 37°C showedsignificantly improved corrosion resistance of the alloy in comparison topure magnesium. Thus, Mg-Ti alloys are promising new biodegradable andbiocompatible materials for temporary implants.
Ion implantation of germanium and carbon ions into thin films of Ge2Sb2Te5 (GST) and GeTe was applied to modify the properties of these phase change materials. It was found that it is possible to amorphize crystalline GST and GeTe using ion implantation for optimized ion doses and energies which depend on the film thickness, ion species and capping layer. A relatively low minimum dose is required for complete amorphization as judged by the absence of diffraction peaks in x-ray diffraction (XRD) scans. It is 4–5×1013 cm−2 for germanium implantation into GST, and slightly higher (1014 cm−2) for germanium implantation into GeTe. The properties of the re-amorphized films depend on ion species, dose and energy. The re-crystallization temperature of re-amorphized GST by ion implantation is comparable or higher than as-deposited amorphous GST. Carbon implantation in particular leads to a large increase in the crystallization temperature Tx. A carbon dose of 1016 cm−2 implanted into 20 nm amorphous GST yielded a crystallization temperature of 300 ºC, much higher than the crystallization temperature of 160 ºC we recorded for as-deposited, amorphous GST. Similarly, high dose carbon implantation into amorphous GeTe leads to large increase in Tx. We recorded a shift in Tx from 195 ºC for as-deposited GeTe to 400 ºC for C-implanted GeTe. Crystalline GeTe re-amorphized by a low dose germanium ion implantation exhibits a re-crystallization temperature below Tx of as-deposited amorphous GeTe and Tx increased with the implanted Ge dose to a crystallization temperature above that of unimplanted GeTe. Ion implantation can be regarded an additional tool to create phase change materials with different and improved switching properties that cannot be achieved by conventional sputter deposition.
The electrochemical storage performance of anatase TiO2 nanotubes (NT) is compared to the performance of TiO2 nanotubes covered by sulfur. Charge/discharge curves and cycling performance of TiO2 NT with and without sulfur deposition with respect to lithium anodes are demonstrated in electrochemical test cells. At 0.5C cycle rate the TiO2 NT exhibited a first cycle specific charge/discharge capacity of 180/155 mAh/g, whereas the TiO2 NT deposited with sulfur showed a remarkably higher performance at 0.5C cycle rate with first cycle charge/ discharge specific capacities of 258/260 mAh/g and a coulombic efficiency of 98%.
Selective emitter structure has long been regarded as a good and relatively simple approach to improve the energy conversion efficiency of Si wafer-based single-junction photovoltaic (PV) cells. Recently emerged double printing method, on the other hand, potentially has the capability of improving the efficiency with no requirement for device structure modification. The manufacturability of these two approaches has been studied on a mass-production platform at JA Solar recently with large scale sampling. The experimental results collected from over two hundred thousand cells demonstrated that both approaches are capable of achieving significant conversion-efficiency gain in a cost-effective way with high yield rate on the PV industry commonly used mass production platform currently adopted by the vast majority of cell manufacturers
The structural, magnetic, and electronic properties of dilute Mn-doped scandium nitride thin films grown by radio frequency N-plasma molecular beam epitaxy are explored. The results indicate a small magnetization extending up to as high as 350K. There is a slight dependence on the manganese concentration, with the lower Mn concentration showing a larger saturation magnetization.
TAGS-85 is a well-known thermoelectric material based on germanium monotelluride that exhibits a second-order displacive transformation from a high-temperature cubic to a low-temperature rhombohedral polymorph. Recent efforts to improve the thermoelectric figure-of-merit through the addition of small amounts of the rare earth elements Ce and Yb have demonstrated a 25 percent increase in ZT at 700K in materials obtained by solidification from the melt. Preliminary analysis by x-ray diffraction of the chemically-modified alloy suggests a partial stabilization of the high-temperature cubic polymorph. 125Te NMR studies confirm the incorporation of rare earth cations into the GeTe-based lattice. Solid state synthesis has been successfully applied to the processing of rare-earth-doped TAGS-85 and has resulted in a further increase in ZT beyond the levels initially observed in melt-solidified materials. This is believed to be due to improved homogeneity in the distribution of the lanthanide.
Nanoparticles (NP) are introduced in a growing number of commercial products, including food and beverage, daily use hygiene products such as toothpaste, or orally-administered drugs. To study the possible toxicity of these nanoparticles, a model system is the in vitro response of eukaryotic cells to the presence of NP. However, to understand the observed effects, it is clear that good physical and chemical characterization of NP, and in particular of their dispersion are needed. Indeed, the expected effects should be different if the study is dealing with agglomerates or isolated nanoparticles. For fundamental understanding, it appears important to work with nanoparticles as well dispersed as possible while being in relevant biological condition, i.e. cellular culture cell.
In this context, we have studied the dispersion of a very common industrial titania NP (Degussa P25 produced in ton quantities). When dispersed in water, the suspensions of NP appear stable for weeks.. When transferred in the cell culture medium (DMEM) or if directly dispersed in DMEM, strong evolution of size is seen as well as sedimentation. To address this problem, we have compared different ways, coming from materials science, of dispersing NP in water with the idea to break in a preliminary step some of the necks between nanoparticles. The effect of dry ball milling, liquid ball milling, size of the balls and Ultrasonic dispersion will be compared. The best results were obtained from high power ultrasonic dispersion. To avoid direct aggregation, when going to DMEM, a “surfactant” relevant with biological studies (Foetal Bovine Serum (FBS)) was added in the suspension in order to coat the nanoparticles prior to transfer in DMEM (or other cell media). The result obtained with various surfactants and cell media will be presented. It must be noted that our best results were obtained in the FBS + DMEM medium.
Material science can be used to enrich secondary school curriculum and illuminate for students the connection between science and technology. Based on materials research being conducted at the University of Illinois, we have developed an interdisciplinary activity that integrates engineering with chemistry and material science.
Students investigate the behaviors of polymers by creating 3-dimensional (3-D) objects. Students can design objects that they “print” on the order of a cubic inch in about 20 minutes. The process students use to create these objects shows the application of engineering to material science in a novel and engaging way.
A photoactive chemical is initiated by the UV and blue light emitted from a data projector. This causes the formation of free radicals, which interact with molecules of a monomer and cause a polymerization reaction. The visual result of this reaction is that a liquid solidifies where students shine light. With black-and-white images, a data projector can direct the light to form any shape. This process can be easily modified to create true 3-D objects by adding another layer of the liquid to the top of the object and then shining the light again. With about 20 dollars worth of supplies from a hardware store, a simple staging device can be created to greatly simplify the process to create a 3-D printer in the classroom. Fabrication of this device can be done by students because the projector controls the x and y array of pixels; the object only needs to move in the z direction, unlike traditional rapid prototyping machines which control movement in the x, y, and z directions.
Results of integration into high school and college curriculum are discussed, and methods of integration and student perceptions of the activity are reported.
In this paper, we report the characterization of vertically aligned ZnO nanowire (NW) arrays synthesized by metal-catalyzed chemical vapor deposition. The growth mechanism of ZnO NWs may be related to vapor-solid-nucleation. Morphological, structural, optical and field emission characteristics can be modified by varying the growth time. For growth time reaches 120 min, the length and the diameter of ZnO NWs are 1.5 μm and 350 nm, and they also show preferential growth orientation along the c-axis. Moreover, strong alignment and uniform distribution of ZnO NWs can effectively enhance the antireflection to reach the average reflectance of 5.7% in the visible region as well. Field emission measurement indicated that the growth time play an important role in density- and morphology-controlled ZnO NWs, and thus ZnO NWs are expected to be used in versatile optoelectronic devices.
We report on ‘in-situ’ solution processed homogeneous (200) oriented MgO ~85nm thin films deposited on Si substrates by inkjet printing. These films are found to show ferromagnetic order beyond room temperature with a saturation magnetization MS as high as ~0.63 emu/g. X-ray photoelectron spectroscopy investigations show the absence of any possible contamination effects, while the Mg 2p, and O 1s spectra indicate that the role of defect structure at the Mg site is important in the observed magnetism. By controlling the pH values of the precursors the concentration of the defects can be varied and hence tune the magnetization at room temperature. The origin of magnetism in these MgO thin films appears to arise from the cation vacancies.
A recently developed generic model of a thermoelectric power generation system suggests a promising future for cost effective and scalable power generation. The model is based on co-optimizing the thermoelectric module together with the heat sink. Using this model, efficiency at maximum output power is calculated. It is shown that this approaches the Curzon-Ahlborn limit at very large Z values which is consistent with thermodynamic systems with irreversible heat engines. However, this happens only when the thermal resistances of the thermoelectric device with hot and cold heat sinks exactly match. For asymmetrical thermal resistances, the efficiency at maximum output power is different. This is consistent with the very recent results for the thermodynamic engines. Finally, we study the impact of lowering the thermal conductivity of the thermoelectric material or increasing its power factor and how these affect the performance of the thermoelectric power generation system.
Ferroelectric electro-optics materials are widely studied for optical applications, such as optical switches, optical scanners, and optical shutters. However, conventional operation of those devices requires a continuous external electrical field. On the other hand, our group proposes an optical property memory effect by controlling domain structure as either full-polarized or depolarized state using asymmetric voltage operation. The optical property memory effect can keep its optical value, such as refractive index and light transmittance without any external electrical field. In this study, it was confirmed that the refractive index state had two stable values depending on domain conditions. This memory effect should be useful for innovative optical switch or scanner in the future.