To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Nano-crystalline lead telluride powder was synthesized by mechanical alloying using a high-energy planetary ball mill. The broadening of the X-ray diffraction peaks vs ball milling time, indicates small crystalline size of the order of 30nm. IR spectroscopy results are discussed and compared to the material prepared from melt.
A significant challenge for high throughput nucleic acid analysis and sequencing is to increase both throughput and sensitivity. Electrical detection methods are advantageous since they can be easily scaled to high density arrays, are highly sensitive, and do not require bulky optical equipment for readout. A focus of most nucleic acid based sensors is the detection of sequence-specific hybridization events between complementary strands of DNA or RNA. These hybridization events can be detected electrically, due to the intrinsic negative charge associated with the phosphate-rich nucleic acid backbone. Field effect transistors (FETs) and high electron mobility transistors (HEMTs) are ideal devices for detecting such hybridization events, due to their high sensitivity to changes in electrical field strength. A key concern for the construction of DNA-based FET and HEMT biosensors is the immobilization of probe oligonucleotides on the active region of the sensor. In previous work, our group has shown that single stranded DNA can be directly immobilized onto semiconductor materials without the need for complex surface chemistry or crosslinking strategies. In the present work, we have shown that the immobilization of single stranded DNA onto these materials is influenced by the terminal phosphate group of the DNA molecule, independent of backbone phosphates. This agrees with previous studies in which phosphates and phosphonates exhibited strong attachment to a variety of metal oxides. We have also shown that surface-immobilized DNA is available for hybridization and that hybridization is sequence specific. Phosphate-dependent immobilization was demonstrated for HfO2, AlGaN, and ZrO2 surfaces using optical detection of DNA-DNA hybridization, as well as x-ray photoelectron spectroscopy (XPS) analysis of DNA-modified surfaces.
A rapid screening method is reported in which material processing parameters are investigated as a function of the CdTe absorber thickness in CdTe/CdS solar cells. It has been used to investigate i) the optimum absorber thickness for CdCl2 processing at 380°C for 10 mins, and ii) the effect on device performance of post-growth annealing of CdS layer with H2, N2, and O2. It was found that the optimum thickness of CdTe compatible with the processing was ∼3μm. The device results were independent of the post-growth treatment of the CdS for the conditions investigated here. The bevel method allowed for ∼30 data points to be obtained from each sample, this giving a significant advantage over conventional experimental methods.
A highly effective technique for etching large batches of GaN wafers, by means of Inductively Coupled Plasma (ICP) tools, has been developed. A variety of 27 × 2 inch wafer batch processes have been investigated and etch rates in excess of 140nm/min with selectivity of 0.9:1 to photoresist (PR) has been achieved.
Particularly, a special active spacer was designed and employed in the ICP system to control plasma profile during the processes. This technique was favourable for increasing etch rates and achieving good uniformities. Using this system a wafer-to-wafer batch uniformity of ±4% was realized.
Reduction of structural defects in III-nitride based optical devices is of critical importance for high efficient and high reliable optoelectronic performance. Here, three different types of structural defects such as threading dislocations, Mg-related pyramidal defects and columnar defects, observed in GaN-related epitaxial films are described and their relation to reliability of GaN-based LDs is discussed. Composition fluctuations of GaInN MQWs with different In concentrations by analyzed by a laser assisted 3D atom probe are also described.
Measurements of nanoscale friction between silicon AFM tips featuring an in-situ solid state heater and silicon substrates (both with native oxide) were performed. The temperature of the heater was varied between room temperature and approximately 650 °C. For these temperatures and the silicon substrate, the temperatures at the point of contact are estimated to range from room temperature to approximately 120±20 °C. Experiments were carried out in ambient atmosphere (˜30% relative humidity) and under dry nitrogen. Tests under constant load revealed that in the presence of ambient, friction increased with heater temperature whereas it did not change in dry nitrogen. For experiments carried out for different tip velocities (40 to 7800 nm/s), friction decreased with velocity in ambient and did not change in dry nitrogen. Both trends can be explained by thermally-assisted formation of capillary bridges between tip and substrate and the kinetics of capillary condensation under ambient conditions.
Surface passivation of silicon substrates using atomic layer deposited Al2O3 and HfO2 thin films are assessed. Al2O3 and HfO2 dielectric layers with various thicknesses were deposited on both sides of n-type (100) FZ-Si substrates (resistivity 4 – 6 Ω-cm) at 200°C by atomic layer deposition (ALD) system. The effective excess carrier lifetime of as-deposited oxide/Si/oxide structure was measured by microwave-photoconductivity-decay (MWPCD) measurement technique and it was observed that the thicker ALD dielectrics lead to higher effective excess carrier lifetime and better surface passivation. The measurements showed average excess carrier lifetime values of 302 μs and 347 μs for as-deposited Al2O3 and HfO2 passivated Si substrates with 150 ALD cycles, respectively. MWPCD and capacitance-voltage (C-V) measurements suggest that as-deposited ALD HfO2 layer leads to a better surface passivation compared to as-deposited ALD Al2O3 layer. Further, the results suggest that there exist fixed negative charges in the bulk of the ALD dielectrics and this contributes to the field effect passivation of the silicon surfaces.
We perform first-principles finite-electric field simulations of PbTiO3 both at zero and high pressures to investigate the effect of pressure on polarization rotation. We find that whereas a large electric field is required at zero pressure to induce a phase transition from the tetragonal (P4mm) phase to the rhombohedral (R3m) phase, at 8GPa a relatively small electric field is required indicating the greater ease of polarization rotation at high pressure. Pressure reduces the relative well depth between the two phases leading to a softer free-energy surface. This explains the increased electro-mechanical coupling obtained in PbTiO3 with pressure.
From angle resolved photoemission, the (100) surface termination of Li2B4O7 is significantly more polar than the (110) surface termination although the accepted dipole orientation of this pyroelectric crystal is along (001). Consistent with the surface termination, the surface charging at the surface of (100) is significantly greater than observed at (110) and plays a role in the surface photovoltage effects. Because of the different interfaces formed, device properties likely depend upon crystal faces of lithium borate.
In Japan, uplift/erosion scenarios must be analysed even if they occur far in the future, as no assessment cut-off times have yet been defined. For this purpose, an argumentation method is developed to allow sensible scenarios to be constructed. The consequences of erosion of the repository may be better estimated in terms of radionuclide fluxes and these compared with those of naturally occurring radionuclides. This paper discusses procedures to derive relevant conceptual models and resultant analyses in a credible manner, which illustrates the effectiveness and robustness of the HLW disposal system.
We describe two techniques dedicated to observe and study the heating of structured materials like micro and nanowires and multilayered compounds. The techniques are thermally modulated fluorescence and thermoreflectance. Thermally modulated fluorescence allows mapping the heating of devices with a sub-wavelength lateral resolution. Thermoreflectance allows deeper physical investigations and can be directly used to determine the thermal conductivity and diffusivity of layered structures. In particular, we will show that by thermally modulating a surface by a point-like source, we are able to determine such quantities for several geometries, taking into account the nature of the substrate (conductive or not) as well as the interface quality between the layers. The experimental results, measured on aluminum thin films of variable thickness and on vanadium dioxide layers are corroborated by an analytical model that analyzes both the amplitude and the phase of the lateral heat diffusion in the structure
Fundamental understanding of the silicon stresses and their changes with traditional wire-bonded and flip chip packages is critical to address the performance and reliability improvements in new technologies. Recently we have developed a novel technique for non-destructive measurements of complete strain state (and thereby the stress state) of the single crystal (bulk Si) by tracing the relative change in direction of an x-ray beam diffracted from a stressed crystal. This is based on the relationship between the stress state in a crystal and the local lattice plane orientation. Experimentally, this can be achieved by using a large area synchrotron white beam in conjunction with a precision grid of x-ray absorbing material placed in the path of the beam. The grid breaks the X-ray beam into an array of micro-beams that are diffracted by the single crystal sample to produce an integrated x-ray topograph on which the inverse grid image is distorted due to changes in the paths of diffracted microbeams i.e. an x-ray reticulograph is created. The distortions are a result of the variations in the diffracting lattice plane orientation produced by strain present in the crystal. By measuring this distortion on multiple topographs through the electronic package and applying the ray tracing principle, the entire strain state of the silicon can be calculated and mapped for the entire sample. We have carried out stress mapping of the silicon device in the package by applying this non-destructive and non-invasive technique.
We proposed a new concept for densification of inert matrix fuels containing minor actinides. In this concept, magnesium silicates which are both a naturally-occurring material and asbestos waste were used as a sintering additive which protects public health by safely disposing of the asbestos waste. In this study, the effects of magnesium silicate additives on the densification behaviors of MgO, Mo and CeO2 were experimentally investigated. The densities of MgO and CeO2 pellets increased with only 1 wt.% additives of MgSiO3 and Mg2SiO4. The densities of Mo pellets showed little change with additives.
Search for novel multi-functional materials, especially multiferroics, which are ferromagnetic above room temperature and at the same time exhibit a ferroelectric behavior much above room temperature, is an active topic of extensive studies today. Ability to address an entity with an external field, laser beam, and also electric potential is a welcome challenge to develop multifunctional devices enabled by nanoscience. While most of the studies to date have been on various forms of Bi- and Ba based Ferrites, rare earth chromites are a new class of materials which appear to show some promise. However in the powder and bulk form these materials are at best canted antiferromagnetics with the magnetic transition temperatures much below room temperature. In this presentation we show that thin films of YbCrO3 deposited by Pulsed Laser Deposition exhibit robust ferromagnetic properties above room temperature. It is indeed a welcome surprise and a challenge to understand the evolution of above room temperature ferromagnetism in such a thin film. The thin films are amorphous in contrast to the powder and bulk forms which are crystalline. The magnetic properties are those of a soft magnet with low coercivity. We present extensive investigations of the magnetic and ferroelectric properties, and spectroscopic studies using XAS techniques to understand the electronic states of the constituent atoms in this novel Chromite. While the amorphous films are ferromagnetic much above room temperature, we show that any observation of ferroelectric property in these films is an artifact of a leaky highly resistive material.
Dynamic constitutional hybrid materials in which the functional self-organized macrocycles are reversibly connected with the inorganic silica mesopores through hydrophobic non-covalent interactions. Supramolecular columnar self-organized architectures confined within scaffolding hydrophobic silica mesopores can be structurally determined by using X-ray diffraction techniques.
ZnO thin films with thickness around 200 nm were deposited on a-plane sapphire substrates by Chemical Vapor Deposition (CVD) method with a mixed ZnO-powder/C-powder solid source. These films were characterized by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and photoluminescence (PL) spectroscopy. The correlation between surface structural properties of ZnO thin films and their optical signature measured by temperature dependence of PL is investigated for various growth conditions such as flow rate O2 injection gas and growth temperature. At room temperature, the columbic interaction enhanced absorption edge of 3.305 eV of these films was determined by optical absorption measurements.
The phonon dynamics of both the A1(LO) and the E1 (LO) phonons in InN has been studied by time-resolved Raman spectroscopy on a subpicosecond time scale. From the temperature-dependence of their lifetimes, we demonstrate that both phonons decay primarily into a large wavevector TO phonon and a large wavevector TA/LA phonon consistent with the accepted phonon dispersion relationship for wurtzite InN. Their lifetimes have been found to decrease from 2.2 ps, at the low electron-hole pair density of5x1017cm-3 to 0.25 ps, at the highest density of2x1019cm-3. Our experimental findings demonstrate that carrier-density dependence of LO phonon lifetime is a universal phenomenon in polar semiconductors.
In the present work we study Zn+O divacancies filled up with varying amount of hydrogen atoms. Besides the structure and energy-related properties of such defects, we also investigate their capability to trap positrons taking into account positron induced forces. We show that the Zn+O divacancy may trap positrons when up to two hydrogen atoms are located inside the divacancy. The calculated properties are discussed in the context of other computational and experimental studies of ZnO.
The development of electric circuit fabrication on heat and chemically sensitive polymer substrates has attracted significant interest as a pathway to low-cost or large-area electronics. We demonstrated the large area, direct patterning of microelectronic structures by selective laser sintering of nanoparticles without using any conventional, very expensive vacuum or photoresist deposition steps. Surface monolayer protected gold nanoparticles suspended in organic solvent was spin coated on a glass or polymer substrate. Then low power continuous wave Ar-ion laser was irradiated as a local heat source to induce selective laser sintering of nanoparticles by a scanning mirror system. Metal nanoparticle possessed low melting temperature (<150°C) due to thermodynamic size effect, and high laser absorption due to surface plasmon mode. These make metal nanoparticles ideal for the low temperature, low laser energy selective laser processing, and further applicable for electronics fabrication on a heat sensitive polymer substrate. We extended our laser selective sintering of nanoparticles research to a large area (> 4” wafer) using scanning mirror to demonstrate current technology for industry level fabrication.
We present a novel fabrication method to create controlled 3-dimensional silicon nanostructures with the lateral dimensions that are less than 50 nm as a result of a rapid clean room compatible process. We also demonstrate periodic and nonperiodic lattices of nanopillars in predetermined positions with the minimum pitch of 100 nm. One of the uses of this process is to fabricate suspended silicon nanowhiskers.