To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Thermal reduction of PdCo molecular precursors may lead to the controlled production of nanoparticles on high surface area carbon supports that can be used as methanol tolerant oxygen reduction catalysts for direct methanol fuel cells (DMFC). Following this concept, a single molecular precursor source was used for the synthesis of bimetallic nanoparticles on highly oriented pyrolytic graphite (HOPG) and Vulcan (VC) carbon supports. Nanostructural formation of palladium-cobalt on highly ordered pyrolytic graphite (HOPG) was study by AFM, SEM and voltammetry. The relative humidity during precursor deposition was used to control the rings self-formation on HOPG surfaces. Palladium and palladium-cobalt nanoparticles were also formed on high surface area carbon support (Vulcan XC-72R) by thermal reduction and characterized by TEM. The Pd/VC and PdCo/VC nanoparticles were tested for the oxygen reduction reaction (ORR) with and without methanol. The Pd-based catalysts have ORR activity and high methanol tolerance.
We investigate a method for non-contact patterning of molten polymer nanofilms based on thermocapillary modulation. Imposed thermal distributions along the surface of the film generate spatial gradients in surface tension. The resulting interfacial stresses are used to shape and mold nanofilms into 3D structures, which rapidly solidify when cooled to room temperature. Finite element simulations of the evolution of molten shapes illustrate how this technique can be used to fabricate features of different heights and separation distances in a single process step. These results provide useful guidelines for controlling proximity effects during evolution of adjacent structures.
Three-dimensional organic field-effect transistors are developed with multiple vertical channels of organic semiconductors to gain high output current and high on-off ratio. High-mobility and air-stable dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene thin films deposited on horizontally elongated vertical sidewalls have realized unprecedented high output current per area of 2.6 A/cm2 with the application of drain voltage -10 V and gate voltage -20 V. The on-off ratio is as high as 2.7×106. Carrier mobility of the organic semiconductor deposited on the vertical sidewalls is typically 0.30 cm2/Vs. The structure is built also on plastic substrates, where still considerable current modulation is preserved with high output current per area of 70 mA/cm2 and with high on-off ratio of 8.7×106. The performance exceeds practical requirements for applications in driving organic light-emitting diodes in active-matrix displays. The technique of gating with electric double layers of ionic liquid is also introduced to the three-dimensional transistor structure.
The Princeton Center for Complex Materials (PCCM) is an NSF-funded Materials Science and Research Center (MRSEC) at Princeton. PCCM currently has four Interdisciplinary Research Groups (IRGs) and several seed projects. PCCM runs a variety of education outreach programs that include: Research Experience for Undergraduates, Research Experience for Teachers, Materials Camp for Teachers, Middle School Science and Engineering Expo (SEE) for 1200 students, and Princeton University Materials Academy (PUMA), for inner city high school students. In this paper we focus on new evaluation efforts for the PUMA and the Science and Engineering Expo. We will discuss first PUMA the SEE and elaborate on the new evaluation efforts for each program.
Created in 2002 by PCCM, PUMA has an inquiry based materials science curriculum designed to work at the high school level. PUMA's activities are paired with an inquiry based evaluation of scientific ability and attitude change. An evaluation of high school students' ability to formulate scientific questions as a result of their participation in this summer program based was developed based on similar studies of college students questioning ability in inquiry learning environments. Created in 2004 by PCCM and partners in Molecular Biology, SEE is run once per year in the spring. It is a day dedicated to capturing the imaginations of young students through science demonstrations and direct interaction with materials scientists and engineers. 1000 middle school students from local schools come to Princeton University to interact with Princeton scientists and engineers and explore science with the help of demonstrations and hands-on activities. Throughout the day, they explore a wide range research from Princeton that is at the cutting edge of science and engineering to generate excitement about science and engineering. In addition to studying over 5000's student written essays we have constructed a pre and post test for student attitudes administered to over 500 students in 2009 to determine the impact of the SEE on students' attitudes about materials science and STEM fields. This large scale attitude assessment and student written statements help to establish the impact of this one day program.
Mg2Sn ingots, doped p-type by the addition of 0–1.0 at. % Ag, were prepared by the vertical Bridgman method at growth rates ∼0.1 mm/min. The crystalline quality and microstructure of ingots were analyzed by X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The single-phase Mg2Sn ingots consist of highly oriented large grains. Measurements of the Hall coefficient, Seebeck coefficient α, and electrical conductivity σ in the temperature range 80–700 K were conducted to study the dependence on the silver content, and to determine the thermoelectric power factor α2σ which reached a maximum value 2.4×10-3 W m-1 K-2 at 410 K for 1.0 at.% Ag content.
Zirconium tetrakis(N,N’-dimethylformamidinate), Zr-FAMD, was synthesized and evaluated as a precursor for the deposition of zirconium oxide (zirconia) thin films via Atomic Layer Deposition (ALD) technique. Zr-FAMD has a high vapor pressure and displays an exceptionally high thermal stability; it is thus well-suited to be used as a precursor for the deposition of zirconia thin films. Zr-FAMD is a more ideally-suited precursor than tetrakisethylmethylaminozirconium or TEMAZr, which has an equivalent vapor pressure, but is plagued with a rather low thermal stability, limiting its usefulness at high deposition temperatures. Zr-FAMD can be used to deposit zirconia thin films at temperatures as high as 375 °C without evidence of decomposition.
The U.S. military uses large amounts of fuel during deployments and battlefield operations. Consequently, the U.S. military has a strong need to develop technologies that increase fuel efficiency and minimize fuel requirements all along the logistics trail and in all battlefield operations. There are additional requirements to reduce and minimize the environmental footprint of various military equipment and operations and reduce the need for batteries (non-rechargeable) in battlefield operations. The tri-agency SERDP (Strategic Environmental Research and Development Program) office is sponsoring a challenging, high-payoff project to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric generator (TEG) system prototype to recover and convert waste heat from a variety of deployed equipment with the ultimate purpose of obtaining additional power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The project seeks to achieve power conversion efficiencies of 10% (double current commercial TE conversion efficiencies) in a system with ˜1.6-kW power output for a spectrum of battlefield power applications. In order to meet this objective, the project is taking on the multi-faceted challenges of tailoring LAST/LASTT-based thermoelectric (TE) materials for the proper temperature ranges (300 K – 700 K), fabricating these materials with cost-effective hot-pressed and sintered processes while maintaining their TE properties, measuring and characterizing their thermal fatigue and structural properties, developing the proper manufacturing processes for the TE materials and modules, designing and fabricating the necessary microtechnology heat exchangers, and fabricating and testing the final TEG system. The ultimate goal is to provide an opportunity to deploy these TEG systems in a wide variety of current military equipment. This would help the Army in achieving one of the Office of Secretary of Defense’s major strategic objectives to maintain and enhance operational effectiveness while reducing total force energy demands. The presentation will review the progress made on 1) the performance of LAST / LASTT TE materials and tailoring their temperature dependency; 2) evaluating the structural (Elastic modulus, Poisson’s ratio and mechanical strength) properties of these materials, 3) development of the necessary LAST/LASTT-based TE modules, 4) development of the required hot- and cold-side microtechnology heat exchangers, and 5) the overall system designs for 30 kW and 60 kW TQG applications and potential performance pathways/differences for these two TQG cases. This work leverages critical fundamental research performed by the Office of Naval Research in developing LAST/LASTT materials.
The magnetic flux density inside a Metglas sheet is much higher than that of the applied external magnetic field due to its high magnetic permeability, which is known as the magnetic flux concentration effect. Magnetic flux concentration of Metglas as a function of its sheet aspect ratio (width/length) was investigated for Metglas/Polyvinylidene fluoride (PVDF) laminar composites. Both the simulations and experimental results suggest that the magnetic flux concentration effect is markedly enhanced when the aspect ratio of a Metglas sheet is reduced. Consequently the magnetostriction of Metglas and the magnetoelectric (ME) voltage coefficients of the laminar composites are enhanced. The ME voltage coefficient for a laminar composite with a 1 mm wide and 30 mm long Metglas sheet (25 μm thick) is 21.46 V/cm•Oe, which is much higher than those reported earlier in similar laminar composites without making use of the flux concentration effect. The results demonstrate an effective means to significantly enhance the sensitivity of the magnetostrictive/piezoelectric composites as weak magnetic field sensors.
We have examined effects of gas velocity and gas pressure on a deposition rate of hydrogenated amorphous silicon (a-Si:H) films and on a volume fraction of clusters in the films using a multi-hollow discharge plasma CVD method. The maximum deposition rate realized for each pressure exponentially increases with decreasing the pressure from 1.0 Torr to 0.1 Torr, whereas the volume fraction of clusters very slightly increases with increasing the deposition rate. Based on the results, we have succeeded in depositing highly stable a-Si:H films of 4.9×1015cm-3 in a stabilized defect density at a rate of 3.0nm/s using the method.
We report on experimental results of non-resonant two-photon absorption-induced photoluminescence in ZnO nanostructures, which may act as a possible route to excite ZnO nanostructure based lasers. Epitaxial ZnO nanorod-like nanostructure was grown on pre-seeded Si (100) substrates by chemical vapor deposition (CVD) method with a mixed ZnO/C solid source. Crystalline ZnO seeds were prepared and controlled by the rapid thermal annealing (RTA) treatment of e-beam deposited amorphous ZnO thin films with various thicknesses.
Photoluminescent nanofibers (PLN) can be formed by combining electrospun polymeric nanofibers and luminescent particles such as quantum dots (QD). The physical properties of PLNs are dependent upon many different nanoscale parameters associated with the nanofiber, the luminescent particles, and their interactions. By understanding and manipulating these properties, the performance of the resulting optical structure can be tailored for desired end-use applications. For example, the quantum efficiency of quantum dots in the PLN structure depends upon multiple parameters including quantum dot chemistry, the method of forming the PLN nanocomposites, and preventing agglomeration of the quantum dot particles. This is especially important in solution-based electrospinning environments where some common solvents may have a detrimental effect on the performance of the PLN. With the proper control of these parameters, high quantum efficiencies can be readily obtained for PLNs. Achieving high quantum efficiencies is critical in applications such as solid-state lighting where PLNs can be an effective secondary conversion material for producing white light.Methods of optimizing the performance of PLNs through nanoscale manipulation of the nanofiber are discussed along with guidelines for tailoring the performance of nanofibers and quantum dots for application-specific requirements.
We have shown that variation in the real part of the dielectric permittivity of typical transparent conducting oxide (TCO) films can have a profound effect on the optical properties of the material. This has been demonstrated by adding small amounts of Zr to an ITO ceramic sputtering target and analyzing the resulting ITO and ITO:Zr (ITZO) films. Comparative electrical and optical analyses of the films show that, although the carrier concentration and mobility do not change appreciably by adding 1 wt.% ZrO2 to the ITO sputtering target, the plasma wavelength increases significantly for the ITZO film. We believe that the underlying physics of these results can be exploited in designing future TCO films for photovoltaic (PV) applications—especially those that embody industrial advantages but remain limited by low mobility.
The uniaxial and biaxial compressive responses of Zr57Nb5Al10Cu15.4Ni12.6–W composite were investigated over a range of strain rates (∼10−3 to 103 s−1) using an Instron universal testing machine (∼10−3 to 10° s−1), drop-weight tower (∼200 s−1), and split Hopkinson pressure bar (103 s−1). The temperature dependence of the mechanical behavior was investigated at temperatures ranging from room temperature to 600 °C using the instrumented drop-weight testing apparatus, mounted with an inductive heating device. The deformed and fractured specimens were examined using optical and scanning electron microscopy. Stopped experiments were used to investigate deformation and failure mechanisms at specified strain intervals in both the drop weight and split Hopkinson bar tests. These stopped specimens were also subsequently examined using optical and scanning electron microscopy to observe shear band and crack formation and development after increasingly more strain. The overall results showed an increase in yield strength with strain rate and a decrease in failure strength, plasticity, and hardening with strain rate. Comparison of uniaxial and biaxial loading showed strong susceptibility to shear failure since the additional 10% shear stress caused failure at much lower strains in all cases. Results also showed a decrease in flow stress and plasticity with increased temperature. Also notable was the anomalous behavior at 450 °C, which lies between the Tg and Tx and is in a temperature regime where homogeneous flow, as opposed to heterogeneous deformation by shear banding, is the dominant mechanism in the bulk metallic glass.
Cu(In,Ga)S2 thin films prepared by rapid thermal sulfurization of metallic precursors yielded solar cells with efficiencies reaching 12.9% [1]. A good short circuit current density was observed together with open circuit voltages up to 850 mV. However, the fill factor was close to, but typically did not exceed 70%. In this contribution we report on the role of junction formation by chemical bath deposition on these parameters. Concentrations in the bath and deposition times were varied. A comparison is made between CdS and Zn(S,O) buffer layers. The influence of the incorporated gallium on surface properties was investigated by ultraviolet photoelectron spectroscopy (UPS) for the valence band edge and near edge X-ray absorption fine structure (NEXAFS) for the conduction band edge. Even in our best cell (13.1%) the activation energy of the saturation current is found to be still smaller than the band gap. High diode ideality factors and voltage dependent current collection prevent higher fill factors.
Theoretical modeling of the decomposition in bcc Fe-Cu alloys has been performed using a combined approach which includes ab-initio calculations of the effective cluster interactions and statistical-mechanical (Monte Carlo) simulations. We showed that the effective Cu-Cu and Cu-vacancy interactions in the bcc Fe matrix have a strong dependence on the global magnetic state of iron. As a result, all the related thermodynamic properties of the alloys (such as solubility limit and diffusivity) are expected to have a pronounced non-Arrhenius temperature behavior, originated from variation of the global magnetization with temperature. We find that strong Cu-vacancy interactions in the bcc Fe matrix lead to a remarkable effect of vacancies on the Cu precipitation and significantly modify the alloy decomposition kinetics under irradiation.
The effects of waste polyethylene aggregate as admixture agent in Portland cement at different addition polyethylene/cement ratios from 0.0156 to 0.3903 were investigated. The reinforced samples were prepared according the ASTM C 150 Standard (samples of 5 × 5 × 5 cm). The reinforcing fibers were milling at a size of 1/25 in diameter, form waste and used them to evaluate the effects in mechanical properties in cement-based composites. The evaluation of polyethylene as additive was based on results of density and compression tests. The 28-day compressive strength of cement reforced with plastic waste at a replacement polyethylene/cement ratio of 0.0468 was 23.5 MPa compared to the control concrete (7.5 MPa). The density of cement replaced with polyethylene varies from 2.114 (0% polyethylene) to 1.83 g/cm3 by the influence of polyethylene.
The nanotechnology is undergoing enormous attention in the areas of biological research for clinical, environmental, and life sciences applications. One of the products from this new technology that attracts researcher’s attentions is the semiconductor quantum dot (QDs) nanoparticles, QDs possess incomparable advantages such as unique size-dependent physical properties, broad absorption spectrum, precise small bandwidth emission wavelength, as well as enhanced chemical and photochemical stability. The QDs can be modified for a controlled and enhanced endocytosis, enhanced cooperative binding activity, and easy introduction of multi-functionalities for medical applications such as targeted delivery and imaging. It can be used for complex studies that play very important roles in the modern biomedical researches. However, when performing the cell related assays, the non-specific cellular uptake of QDs is a major concern because they can lead to false positives or false results. In our study, we used different surface modified QDs treated with different blocking buffers to eliminate cellular uptake. The preliminary results showed that the cellular uptake of QDs can be eliminated by surface modification of the QD materials and by performing the assays in the presence of blocking buffers. As a result of the elimination of non-specific uptake of QDs the sensitivity and specificity of detection increased significantly.
NiSi2 nanocrystals were synthesized and used as the floating gate for nonvolatile memory application. Vapor-solid-solid mechanism was employed to grow the NiSi2 nanocrystals by introducing SiH4 onto the Ni catalysts-covered SiO2/Si substrate at 600°C. The average size and density of the NiSi2 nanocrystals are 7∼10nm and 3×1011 cm-2, respectively. Metal-oxide-semiconductor field-effect-transistor memory with NiSi2 nanocrystals was fabricated and characterized. Programming/erasing, retention and endurance measurements were carried out and good performances were demonstrated.
The crystallinity of colloidal CdTe nanoparticles has been enhanced post synthesis. This control over the nanoparticles’ properties has been achieved using non-adiabatic thermal processing. The technique preserves the polymer capping and hence introduces no adverse effects on the nanoparticles’ optical properties. The crystallinity is probed primarily through Raman spectroscopy in a hollow core photonic crystal fiber and x-ray diffraction powder studies.
Here we discuss a novel capacitive-type chemical sensor structure that uses recently discovered porous nanocrystalline silicon (pnc-Si) membranes [1] covered with metal as the capacitor plates while a polymer layer sandwiched between them serves as the sensing layer for solvent vapor detection. Pnc-Si is new ultrathin (15 nm) membrane material with pore sizes ranging from 5 to 50 nm and porosities from < 0.1 to 15 % that is fabricated using standard silicon semiconductor processing techniques. We present a study of pnc-Si membranes as a platform for such a sensor. The degree of swelling and the reversibility of the polymer/pnc-Si membrane system immersed in analyte-containing vapors are observed using optical and electrical techniques.