To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We deposited BiFeO3 (BFO) thin films on SrRuO3 (SRO)/Pt bottom electrodes by radio-frequency (RF) sputtering. Some samples were formed at the substrate temperature of 550 °C, and others were foremed at 450 °C and post-annealed at 650°C for crystallization. The coercive field in the post-annealed BFO film was smaller than that in the 550°C-deposited BFO film. The coercive field in Mn-doped BiFeO3 (BFMO) films which were deposited at 550 ˚C on SRO/Pt(111) was lower than that in undoped BFO films. Degradation of the remanent polarization was less significant in the post-annealed BFO film.
Thermoelectric materials can provide sources of clean energy and increase the efficiency of existing processes. Solar energy, waste heat recovery, and climate control are examples of applications that could benefit from the direct conversion between thermal and electrical energy provided by a thermoelectric device. The widespread use of thermoelectric devices has been prevented by their lack of efficiency, and thus the search for high-efficiency thermoelectric materials is ongoing. Here we describe our initial efforts studying copper-containing ternary compounds for use as high-efficiency thermoelectric materials that could provide low-cost alternatives to their silver-containing counterparts. The compounds of interest are semiconductors that crystallize in structures that are variants of binary zincblende structure compounds. Two examples are the compounds Cu2SnSe3 and Cu3SbSe4, for which we present here preliminary thermoelectric characterization data.
HfO2 is a promising dielectric for alternative high-k gate dielectrics and DRAM capacitor applications because of its high dielectric constant, excellent thermal stability and compatibility with Si processing. Particularly atomic layer deposition (ALD) is suitable as a deposition tool for gate dielectrics as well as capacitor dielectrics due to its excellent conformity and precise thickness control. In order to achieve ideal ALD performance, it is critical to have appropriate precursors. In order to achieve ideal ALD performance, it is critical to use appropriate enabling precursors. So far, Tetrakisethylmethylamidohafnium (TEMAHf) has been considered as one of the most promising precursors due to its good physical properties. However, this precursor has relatively low thermal stability, which has often become a drawback to ALD process for HfO2. To circumvent the decomposition issues of TEMAHf during ALD deposition, often low process temperatures have been used that lead to less dense films and high level of carbon contamination. In order to overcome these challenges, the novel hafnium formamidinate (Hf-FAMD) precursor is developed as an alternate Hf source at Dow Electronic Materials. Following our success with formamidinate platform in previously reported novel lanthanum formamidinate (La-FAMD) source, this new precursor also exhibits high thermal stability and high reactivity towards water and ozone. In this work, we report, for the first time, comparative studies with TEMAHf and novel Hf-FAMD source, e.g. Hf-FAMD exhibits acceptable vapor pressure (> 0.1 Torr at 100 °C) similar to that of TEMAHf, and higher thermal stability than TEMAHf, thus leading to high quality ALD films. We also present the crystal structure of La-FAMD, elucidated by X-Ray Crystallography, and physical properties of novel Hf-FAMD relevant to ALD.
Nitridation of β-Ga2O3 to GaN in an atmosphere of NH3/Ar was investigated from the view points of kinetic results by thermogravimetric analysis (TGA) and microstructural observation. TGA and X-ray powder diffraction results showed that the nitridation of Ga2O3 to GaN starts at about 650°C and decomposition of GaN formed occurs from 870°C. Isothermal TGA results showed that the nitridation proceeds linearly with time at 800 – 1000°C. Microstructural observation of the samples nitrided at 800°C showed that fine GaN particles (∼50 nm size) deposit on surfaces of Ga2O3 particles at an early stage, and the deposits grow with progress of the nitridation.
Two fundamental concerns must be addressed when attempting to isolate low-level waste in a disposal facility on land. The first concern is isolating the waste from water, or hydrologic isolation. The second is preventing movement of the radionuclides out of the disposal facility, or radionuclide migration. Particularly, we have investigated here the latter modified scenario.To assess the safety for disposal of radioactive waste-concrete composition, the leakage of 137Cs from a waste composite into a surrounding fluid has been studied. Leakage tests were carried out by original method, developed in Vinca Institute [1,2,3,4,5]. Transport phenomena involved in the leaching of a radioactive material from a cement composite matrix are investigated using three methods based on theoretical equations [6,10]. These are: the diffusion equation for a plane source an equation for diffusion coupled to a first-order equation, and an empirical method employing a polynomial equation‥ The results presented in this paper are from a 25-year mortar and concrete testing project that will influence the design choises for radioactive waste packaging for a future Serbian radioactive waste disposal center.
Bimetallic nanoparticles of PtCu and PtNi supported on iron oxide particles were synthesized by a new method employing a 4.8-MeV electron beam as a trigger for reduction of their aqueous ions, and their CO oxidation catalysis was evaluated to find activities enhanced by the alloying. Sample materials of PtCu (PtNi) bimetallic grains supported on γ-Fe2O3 particles were synthesized by irradiating with the electron beam a glass vial containing precursors in an aqueous solution. The vial contains aqueous ions of platinum and copper (nickel) and γ-Fe2O3 particles of average size of 30 nm. The irradiation induces water radiolysis generating reducing species, such as hydrated electrons, and metallic nanograins are formed and stabilized on the support material. The irradiation was finished in several seconds without using any organic solvent and any surfactant. The average grain sizes observed with a TEM were around 3 nm in diameter. XRD patterns of PtCu samples exhibited the FCC structure with peak shifts obeying the Vegard’s law at low Cu concentrations. X-ray absorption spectra measured at edges of the constituent elements indicated that Pt is in the metallic state and coordinates certainly with Cu or Ni. Catalytic activity of CO oxidation of the material was evaluated by measuring residual CO contents in air in contact with the sample material by using a gas-chromatograph. The activities of the PtCu and PtNi samples were higher than that of monolithic Pt on γ-Fe2O3. The correlation between the atomic structure in these nanograins and their activities was investigated, which indicated that the random alloy enhances the activity. These bimetallic nanoparticles are expected as catalysts for preferential oxidation of CO in hydrogen gas fed to fuel cells.
This paper presents the results of our analysis of ferrogels prepared using uncoated and polyvinylpyrrolidone (PVP)-coated magnetite (Fe3O4) nanoparticles. The N-isopropylacrylamide (NIPAM) based hydrogel is used with 15-25 nm Fe3O4 nanoparticles different concentrations in the range 1.25 -14%. These samples were analyzed using ultra small angle x-ray scattering (USAXS), Transmission Electron Microscopy (TEM), and Direct-Current Superconducting Quantum Interference Devices (DC-SQUID) magnetometry. Samples prepared with polyvinylpyrrolidone (PVP) coated nanoparticles showed a better single particle distribution compared to uncoated samples. USAXS data indicated that the gels prepared using uncoated nanoparticles have a large two particle agglomerations. In both cases, the volume fraction of the particles in the gel is linearly proportional to the initial particle concentrations. The DC-SQUID magnetometry analysis indicated that the magnetic moment of the gel samples prepared with uncoated particles is ∼ 2emu/g compared to ∼1.5emu/g of those having coated particles.
We studied the formation of phenylalkyltrichlorosilane self-assembled monolayers on native oxide covered silicon. After a first chemisorption step in the monolayer growth, the presence of the short alkyl chain (3-4 carbon atoms) is responsible for a second growth step which corresponds to the arrangement between molecules. We found that this packing step is accelerated by replacing phenyl by pentafluoro-phenyl rings, possibly due to quadrupolar interactions between fluorinated cycles. Furthermore we demonstrate that mixing phenyl and pentafluoro-phenyl molecules leads to an even faster packing step which is accounted for by hydrogen bonding CH...FC in a face to face phenyl/pentafluoro-phenyl arrangement. We believe these results allow improving charge delocalization over conjugated molecular domains. In a second part, we studied the phase separation between phenyl-alkyltrichlorosilane and octadecyltrichlorosilane (OTS) molecules. Improving the phase separation was studied using ring to ring interactions afore-analyzed. We show phase separation is improved and OTS islands are smaller with phenyl species that involve stronger ring to ring interactions. The best case is obtained with mixing phenyl and pentafluoro-phenyl rings using hydrogen bonds for packing together the aromatic species. These results demonstrate improved control of SAM composition and morphology essential to further use the obtained islands for building molecular devices.
The (Ga1−xMnx)N nanorods were grown on Al2O3 (0001) substrates by using rf-associated molecular beam epitaxy. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected-area diffraction pattern (SADP) results showed that the (Ga1−xMnx)N nanorods had (0001) preferential orientations. XRD patterns showed that the (Ga1−xMnx)N nanorods contained a small number of grains with different preferred orientations. High-resolution TEM (HRTEM) images showed that the (Ga1−xMnx)N nanorods consisted of different preferentially oriented grains. The initial formation mechanisms for the (Ga1−xMnx)N nanorods grown on Al2O3 (0001) substrates are described on the basis of the XRD, the TEM, the SADP, and the HRTEM results.
Polarity effect on the interfacial reactions from high-density electric currents was investigated in a solder interconnect with a large disparity in the effective charge between the solder constituents. A reverse polarity effect was found where the intermetallic compound layer at the cathode grew significantly thicker than that at the anode under electric loading. Such an abnormal polarity effect was shown to result from electromigrations of Sn and Zn along opposite directions as dictated by the disparity in their effective charges. As Sn migrated to the anode under electron wind force, the resulting back stress drove Zn atoms to drift to the cathode. A kinetic analysis of the Zn mass transport explained the differential growth of the intermetallic compounds at the two electrodes, in good agreement with the experimental data.
Eu2+-doped Li2SrSiO4 phosphors were prepared by two different synthesis processes, the Pechini sol-gel route and solid-state reaction (SSR) method. Their morphology, crystal structure, and luminescence properties have been characterized. Li2SrSiO4:Eu2+ phosphors show broad and intensive excitation in the range of 390–480 nm and emit yellow-orange light extending from 500 to 700 nm. The luminescence efficiency of Li2SrSiO4: Eu2+ phosphors synthesized through the Pechini route is much better than that of phosphors prepared by solid-state reaction method. The application of phosphors from the Pechini route in white light emitting diodes (LEDs) has been investigated. The Commission Internationale de L’Eclairage (CIE) chromaticity coordinates and the correlated color temperature of these white LEDs have been calculated; they are comparable to corresponding values of commercial Y3Al5O12:Ce3+ converted white LEDs.
Diatoms are well known for the intricately patterned nanostructure of their silica-based cell walls. To date, the optical properties of diatom cell-wall ultrastructures have largely gone uncharacterized experimentally. Here we report the results of a detailed experimental investigation of the way in which light interacts with the ultrastructure of a representative centric diatom species, Coscinodiscus wailesii. Light interaction both with individual valves and whole bivalves of the diatom C. wailesii was measured. Significant sixfold symmetric diffraction through the valve ultrastructure was observed in transmission and quantified to efficiencies that were found to be strongly wavelength dependent; approximately 80% for red, 30% for green, and 20% for blue light. While these results may potentially offer insight into the role of periodic nanostructure in diatom selection, they are also important for consideration in the design of biomimetic optics-based diatom applications.
Titania coatings with various morphologies were formed on titanium surfaces by hydrothermal treatment using a dilute alkaline solution and evaluated in their hydroxyapatite (HA)-forming abilities in simulated body fluid (1.5SBF) under ultraviolet (UV) irradiation. The HA formation on the titania coating in 1.5SBF was enhanced by UV irradiation. The amount of phosphate groups adsorbed on the titania, after soaking in 1.5SBF for 24 h under UV irradiation, was estimated to be larger than that of calcium ions, whereas that of calcium ions on the titania, after soaking without UV irradiation, was larger than that of phosphate groups. It was suggested that the titania generated much basic Ti–OH groups at its surface by UV irradiation and subsequently adsorbed phosphate groups, such as H2PO4−, resulting in the formation of a new surface rich in the amount of the groups, which eventually enhanced the HA formation in 1.5SBF.
Due to their versatility and accuracy, nanoindentation systems are increasingly used for the characterization of micron-sized particles. Single microbial cells (e.g., yeast cells) can be regarded as micron-sized, liquid-filled biological particles. Applying a nanoindentation system for the compressive testing of those cells offers many options, such as testing in liquid environment. However, diverse experimental problems have to be resolved, especially the visualization of the cells in liquid and the alignment of the surfaces between which the cell is compressed. Single yeast cells were tested using a nanoindenter equipped with a flat punch tip. The deformation behavior of the cells during loading as well as the shape recovery behavior during unloading was investigated. A bursting force was determined as the cell wall was failing at higher deformations. Moreover, the influence of the compression speed on the cell mechanical behavior was characterized.
It will be shown that in the considered paper, a mistake occurred by handling or editing of experimental data for one of two investigated materials, namely, for cubic germanium nitride having spinel structure (γ-Ge3N4). This mistake led to incorrect values of the shear modulus G0, Young’s modulus E0, and Poisson’s ratio ν0 of this compound. My effort to recover the elastic moduli of γ-Ge3N4 from the available data gave the following results: G0 = 124 GPa, E0 = 326 GPa, and ν0 = 0.32.
The oxidation behavior of Zr2[Al(Si)]4C5 and Zr3[Al(Si)]4C6 in air has been investigated. The oxidation kinetics of bulk Zr2[Al(Si)]4C5 and Zr3[Al(Si)]4C6 at 900–1300 °C generally follow a parabolic law at a very short initial stage and then a linear law for a long period with the activation energy of 237.9 and 226.8 kJ/mol, respectively. The oxide scales have a duplex structure, consisting of mainly an outer porous layer of ZrO2, Al2O3, and aluminosilicate/mullite, and a thin inner compact layer of these oxides plus remaining carbon. The oxidation resistance of Zr2[Al(Si)]4C5 and Zr3[Al(Si)]4C6 has been improved compared with Zr2Al3C4, and is much better than ZrC due to larger fraction of protective oxidation products, Al2O3 and aluminosilicate/mullite.
Apatite films were deposited onto titanium (Ti) metal substrates by an electrodeposition method under a pulse current. Metastable calcium phosphate solution was used as the electrolyte. The ion concentration of the solution was 1.5 times that of human body fluid, but the solution did not contain magnesium ions at 36.5 °C. We used an average current density of 0.01 A/cm2 and current-on time (TON) equal to current-off time (TOFF) of 10 ms, 100 ms, 1 s, and 15 s. The adhesive strength between apatite and Ti substrates were relatively high at TON = TOFF = 10 ms. It is considered that small calcium phosphate (C–P) crystals with low crystallinity were deposited on the Ti surface without reacting with other C–P crystals, H2O, and HCO3− in the surrounding environment. This resulted in relaxation of the lattice mismatch and enhancement of the adhesive strength between the apatite crystals and Ti substrates.