To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An unexpectedly high antiferromagnetic transition temperature (TN = 130 K) has been observed in the double perovskite Ba2154SmMoO6 as a result of a strong interplay between spin, orbital and lattice degrees of freedom. A variable temperature neutron diffraction study of Ba2154SmMoO6 demonstrates that the orbital order below TN is as a result of a Jahn-Teller distortion of the MoO6 octahedra.
Preparation of nonbiofoulingsurface and micropatterned biorecognition layer over nonbiofoulingfor highly sensitive microarray biosensors, was conducted by constructing biocompatible poly(2-methacryloyloxyethyl phosphorylcholine(MPC)) brushes on polymer substrates based on living radical polymerization using macrophotoiniferters comprised of 2-ethylhexyl methacrylate (EHMA) and 4-vinylbenzyl N,N-diethyldithiocarbamate (VBDC).Protein adsorption on these modified surfaces significantly reduces compared to on polymeric substrate and the micropatterning consisted of poly(MPC) brush and biorecognition layer can be easily done by applying photomask with high fidelity.
Drift of metal ions in low-k dielectrics was investigated by Triangular Voltage Sweep (TVS) measurements on planar capacitors with different gate materials: Al, Ta, Ru, Ti, Cu, Pt and a-Si.
We report the growth of Cu2ZnSnS4 (CZTS) thin films by electrodeposition in ionic liquid. Sulfurization was performed in elementary sulfur vapor environment at 450°C for 2 hours. The X-ray diffraction analysis indicated that the film has a stannite structure with preferred grain orientation along (112). Photo-absorption measurement of the sample was performed from 500 nm to 990 nm. It is found that the energy bandgap of the film is about 1.49eV and the absorption coefficient is found to be of the order of 104cm-1.
Most of the exothermic nuclear reactions transfer the mass defect or binding and surplus energy into kinetic energy of the resulting particles. These particles are traveling through material lattices, interacting by ionization and nuclear collisions. Placing an assembly of conductive-insulating layers in the path of such radiation, the ionization energy is transformed into charge accumulation by polarization. The result is a super-capacitor charged by the moving particles and discharged electrically. Another more promising solution is to use bi-material nanoparticles organized such as to act like a serial connection and add the voltage. A spherical symmetry fission products source coated in several nano-layers is desired for such structures. The system may operate as dry or liquid-immersed battery, removing the fission products from the fissile material. There is a tremendous advantage over the current heat flow based thermal stabilization system allowing a power density up to 1000 times higher.
We have investigated temperature dependence on the hysteresis phenomenon of SLS poly-Si TFT on a glass substrate, extremely at low temperature (213K). The p-type sequential lataral solidification (SLS) polycrystalline Silicon (poly-Si) TFT was fabricated on glass substrate. As the temperature was reduced, it was observed that hysteresis phenomenon was increased, whereas the hysteresis was suppressed at high temperature. This could be explained by a difference of initially electron and hole trapped charges into gate insulator is much larger in low temperature than in high temperature. And we have verified that drain current was changed with a different previous gate starting voltage even at same bias condition by experimental results due to the hysteresis phenomenon of SLS poly-Si TFT. Hysteresis of SLS poly-Si TFT should be improved for a pixel element of high quality AMOLED display.
Both CVD and ALD deposition techniques benefit from a detailed understanding of the reaction mechanisms of the precursor molecules with the surface. In this paper, the reactions of hexakis ethylaminodisilane (AHEAD™), hexamethoxydisilane and hexamethyldisilane were studied on high surface area silica granules at 200-375 °C. Silica was heat treated at 200-820 °C to control the number of surface Si-OH groups. The samples were characterized by FTIR and solid state NMR spectroscopy. After the chemisorption of the precursors with silica, Si-H bonds, not originally present in the molecules, were identified for AHEAD and hexamethoxydisilane, but not for hexamethyldisilane. It is suggested that with AHEAD and hexamethoxydisilane, cleavage of the Si-Si bond takes place during the chemisorption with Si-OH sites. Since no reaction for hexamethyldisilane at the studied temperatures was observed, a prerequisite for the reaction with Si-OH groups seems to be the presence of electronegative O or N atoms in the ligands. In the paper, possible reaction mechanisms with the various surface species are discussed.
In this work, the results of 3-dimensional finite element analysis (FEA) of Aluminum Nitride (AlN) homogeneous bimorphs (d31 mode) are shown. The coupled-field FEA simulations were performed using the commercially available software tool ANSYS. The effect of altering the contact geometry and position on the displacement, electric field, stress, and strain distributions for the static case is reported.
Piezoelectric beams are commonly used in microelectromechanical systems (MEMS) and also have many possible applications in smart sensor and actuator systems. For example, they have been used as the active element in microfluidic and microactuator MEMS devices. In the actuator mode, they employ the converse piezoelectric effect to couple electrical energy into mechanical deformation. Aluminum Nitride (AlN) based devices have attracted much interest because AlN is a piezoelectric material with high thermal stability, high dielectric strength, a reasonable electromechanical coupling coefficient, and a perfect compatibility with standard silicon processing techniques.
The resistance switching in Pt/Co-O/Pt and Ta/Co-O/Pt has been investigated. Compared to Pt/Co-O/Pt, the reset current was more efficiently decreased in Ta/Co-O/Pt by using the load resistor in the forming process, indicating that the embedded resistance component with little parasitic capacitance effectively limits the current in the forming process. The reset process with the reset current lower than 0.15 mA was successfully demonstrated in Ta/Co-O/Pt. In addition, the high speed resistance switching by the voltage pulse with the pulse width of 20 ns was carried out, by investigating the pulse voltage height dependence of reset speed in Ta/Co-O/Pt.
Nanocrystalline silicon (nc-Si) micro-bridges are melted and crystallized through Joule heating by applying high-amplitude short duration voltage pulses. Full crystallization of nc-Si bridges is achieved by adjusting the voltage-pulse amplitude and duration. If the applied pulse cannot deliver enough energy to the bridges, only surface texture modification is observed. On the contrary, if the pulse is not terminated after the entire bridge melts, molten silicon diffuses on to the contact pads and the bridge tapers in the middle. Melting of the bridges can be monitored through current-time (I-t) and voltage-time (V-t) measurements during the electrical stress. Conductance of the bridges is enhanced after the electrical stress.
In this study a two-step heat treatment was applied to high Nb containing γ-TiAl based alloys in order to investigate the initial stage of the lamellae formation in ordered α2-grains as well as in massively transformed γm-grains. The first heat treatment step, conducted in the single α-phase field followed by oil quenching, leads to a microstructure consisting of supersaturated α2-grains and a small volume fraction of γm-grains. The second step of the heat treatment was performed below the eutectoid temperature, i.e. within the (α2+γ)-phase field region and was again followed by oil quenching. There, the formation of ultra-fine γ-lamellae takes place in the α2-grains and (some) fine α2-lamellae are formed in the γm-grains. In both cases the lamellae show a Blackburn orientation relationship with the matrix grain. It was found that the precipitation of γ-laths in the supersaturated α2-grains is faster than the formation of α2-laths in γm-grains. The characteristics of the initial stage of formation were investigated by transmission electron microscopy.
Poly(vinylidene fluoride) (PVDF)/exfoliated graphite nanoplate (xGnP) nanocomposites were prepared by a solution mixing method for the first time. The thermal, mechanical and electric properties of these nanocomposites were studied by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and an impedance analyzer, respectively. The DSC results indicated that xGnP might act as the nucleating agents and accelerated the overall non-isothermal crystallization process of PVDF. Meanwhile, the incorporation of xGnP also significantly improved the storage modulus and conductivity of the PVDF/xGnP nanocomposites with an increment in the graphite nanoplate content, respectively.
Extensive ab-initio calculations were performed to find formation energies of stable C complex configurations in silicon as function of stress. The results indicate that substitutional C is the lowest energy state, while the <100> split interstitial is the dominant mobile species. Investigation of small carbon/interstitial clustering suggests that these clusters are only significant under a substantial interstitial supersaturation. We studied the diffusion path for neutral C including the impact of stress. Through KLMC analysis of stress effect on diffusivity, we found that tensile biaxial strain enhances the effective C diffusivity, with a stronger stress dependence for C diffusivity in the out-of-plane direction.
Temperature dependence of electrical properties in NiO thin films for ReRAM applications has been investigated. I-V measurements have been carried out in the temperature range from 100K to 523K. The resistance in the high resistance state (HRS) is almost independent of temperature below 250K, whereas it decreases with an activation energy of 300 meV above 250K. Hopping conduction and band conduction may be dominant in the low- and high-temperature range, respectively. Admittance spectroscopy on the NiO/n+-Si structure¡¡reveals the existence of a high density of traps, which may contribute to the conduction in HRS. In the low resistance state (LRS), however, the resistance slightly increased in the whole temperature range and the trend is similar to that of metallic Ni film, indicating the metallic Ni defects is related to the conduction in LRS. The Pt/NiO/Pt structure demonstrated stable resistance switching even at temperature as high as 250°C or higher. Since other competitive nonvolatile memories will face severe difficulty in high-temperature operation, the present ReRAM shows promise for high-temperature application.
The photoluminescence of MBE-grown InGaN/GaN vertical heterostructures on c-axis oriented GaN nanocolumns is investigated. Nanocolumnar InGaN heterostructures exhibit luminescence efficiencies greater than 20% for peak emission wavelengths as long as 540 nm. Compared to otherwise identical InGaN samples with larger median column diameters, the luminescence is blue-shifted and exhibits reduced efficiency for diameters less than about 50 nm. Growth of InGaN on GaN columns with a broad distribution of diameters results in broad-band photoluminescence that appears white to the eye and has efficiency as high as 23%.
The data on historic mortars and concretes provide qualitative and quantitative information to evaluate long-term behavior of cement materials in repositories and to understand processes that may occur in repositories (e.g., interaction with other materials and radionuclide transfer). Beyond that, such information is important to demonstrate safety aspects of the repositories to the public and stakeholders.
A number of reports have been devoted to study of historical mortars and concretes used in the Western countries. The purpose of this paper is to review studies on compositions and structures of analogs, located mainly over the former Soviet Union's territory.
The microstructures of tungsten, molybdenum and copper wires used as Langmuir probes at ISTTOK edge plasma have been investigated. The probes cross-sections evidenced extensive grain growth, intergranular bubbles and increased hardness at the plasma exposed regions. Internal surfaces of large bubbles exhibited slip bands resulting from plastic deformation induced by high H2 pressure. Elastic recoil detection analysis was used to measure H concentration profiles. The present results suggest that H2 bubble formation in first wall components under long-term high thermal loads should be closely monitored in nuclear fusion devices. Strategies for H damage mitigation are proposed and discussed.
Polyvinyl alcohol/Poly-aniline/Vanadium Oxide nanocomposite-based macroscopic fibers have been generated by using a redox reaction addressed while performing an extrusion shaping process. The resulting composites have been thoroughly characterized via a large set of techniques such as SEM, SAXS, XRD and FTIR, in order to determine aniline effects over final materials' structures and properties. Thus, the perturbation of the preferential orientation of the V2O5 nano-ribbons toward the fiber main axis, induced by aniline Red-ox intercalation, has been observed. Also, the partial reduction of V5+ species to V4+ ones, due to the strongly oxidizing character of the first ones toward aniline, has been revealed by Electron Spin Resonance (ESR). Moreover, these fibers are able to detect 5 ppm of ethanol within 3-5 seconds at 42 °C, and possess a toughness of 12 J.g-1.
The Yucca Mountain repository combines multiple barriers, both natural and engineered, which work both individually and collectively to limit the movement of water and the potential release and movement of radionuclides to the accessible environment. Engineered structures, systems and components (SSCs) are designed to function in the natural environment utilizing materials chosen to perform their intended functions in order to meet the postclosure performance objectives. Similarly, the features of the natural environment are expected to respond to the presence of the repository through geomechanical, hydrogeologic and geochemical changes.At Yucca Mountain, specific features, both engineered and natural have been identified as requiring design control during repository construction and operations. The integration between design and postclosure safety analysis is facilitated using design control parameters.The term “design control parameters” includes functions and performance requirements allocated to SSCs through the design process, as well as the attributes of SSCs that are developed during design (e.g., dimensions; weights; materials; fabrication and quality-control processes; and operating conditions). These control parameters provide an interface between the design and the analyzed postclosure safety bases, which needs to be maintained through the licensing process. Maintenance of the design is controlled through configuration management and procedural safety controls.The design control parameters serve three key purposes. First, they identify key aspects of the design that serve as the design bases for the designers of the SSCs of the facility. Second, they provide a useful input to the analyses of relevant postclosure features, events and processes (FEPs) and are used to either exclude FEPs from the postclosure safety analysis or as an input to models of included FEPs in the safety analysis. Finally, they provide important controlled interface constraints between the design and safety analyses organizations that are amenable to configuration management.Several examples of such design controls will be presented in this briefing. The first type of design controls relates to the location of the underground facility, including standoffs from faults and the ground surface. The second type of design controls relates to the configuration of the engineered features includingthe spacing of emplacement driftsand drip shield dimensions and characteristics. A third type of design controls relates to constraints on handling, loading and emplacing waste forms in canisters and waste packages in the emplacement drifts.
We have designed and grown a series of quantum dot semiconductor saturable absorber mirrors (QD-SESAMs) for a range of operating wavelengths, incorporating innovative design and processing features to optimise the device performance. Using a range of reflectivity studies, ellipsometric measurements and both time-integrated and time-resolved spectroscopic studies, we have conducted detailed investigations of device performance. Extensive modelling work of dielectric multilayers has been undertaken which supports our experimental findings and allows us to understand and design novel structures in order to improve and tailor device characteristics, including dielectric capping and non-normal incidence. We demonstrate samples designed for operation with the higher excited-states of the QDs which produced a self-starting train of mode-locked pulses with a temporal duration of 200 ps at a repetition rate of 78 MHz in a Nd:YVO4 solid-state laser. We also present SESAMs incorporating electronically coupled QD bilayers, allowing long wavelength operation.