To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Vortex sound is the branch of fluid mechanics concerned with the conversion of hydrodynamic (rotational) kinetic energy into the longitudinal disturbances we call sound. The subject is itself a subsection of the theory of aerodynamic sound, which encompasses a much wider range of problems also involving, for example, combustion and ‘entropy’ sources of sound. The book is based on an introductory one-semester graduate level course given on several occasions at Boston University. Most students at this level possess an insufficient grasp of basic principles to appreciate the subtle coupling of the hydrodynamic and acoustic fields, and many are ill-equipped to deal with the novel analytical techniques that have been developed to investigate the coupling. Great care has therefore been taken to discuss underlying fluid mechanical and acoustic concepts, and to explain as fully as possible the steps in a complicated derivation.
A considerable number of practical problems occur at low Mach numbers (say, less than about 0.4). It seems reasonable, therefore, to confine an introductory discussion specifically to low Mach number flows. It is then possible to investigate a number of idealized hydrodynamic flows involving elementary distributions of vorticity adjacent to solid boundaries, and to analyze in detail the sound produced by these vortex–surface interactions. For a broad range of such problems, and a corresponding broad range of noise problems encountered in industrial applications, the effective acoustic sources turn out to be localized to one or more regions that are small compared to the acoustic wavelength.
The sound generated by turbulence in an unbounded fluid is usually called aerodynamic sound. Most unsteady flows of technological interest are of high Reynolds number and turbulent, and the acoustic radiation is a very small byproduct of the motion. The turbulence is usually produced by fluid motion over a solid boundary or by flow instability. Lighthill (1952) transformed the Navier–Stokes and continuity equations to form an exact, inhomogeneous wave equation whose source terms are important only within the turbulent region. He argued that sound is a very small component of the whole motion and that, once generated, its back-reaction on the main flow can usually be ignored. The properties of the unsteady flow in the source region may then be determined by neglecting the production and propagation of the sound, a reasonable approximation if the Mach number M is small, and there are many important flows where the hypothesis is obviously correct, and where the theory leads to unambiguous predictions of the sound.
Lighthill was initially interested in solving the problem, illustrated in Fig. 2.1.1a, of the sound produced by a turbulent nozzle flow. However, his original theory actually applies to the simpler situation shown in Fig. 2.1.1b, in which the sound is imagined to be generated by a finite region of rotational flow in an unbounded fluid. This avoids complications caused by the presence of the nozzle.