To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given the extraordinary achievements seen in the scientific revolution and the huge cultural and technological advantages that those advances conferred on the Western world, it is surprising that so little has been written about it by those concerned with economic development. Major writers who have claimed either the parity or superiority of China to the West economically prior to the eighteenth century have been almost entirely silent about the European scientific revolution, its long history, and its significance.
If we credit Herbert Butterfield's claim set out in the introduction to this study, then it is clear, as the last chapter has shown, that there was a great transformation of thought regarding our understanding of the forces governing the natural world. That mental transformation uniquely unfolded in the West during the last phases of the scientific revolution. This means that Max Weber's question about “what combination of circumstances” were responsible for the great ascendance of the West must include those of the revolutionary new scientific point of view that infused the whole gamut of seventeenth-century natural scientific inquiry, not just astronomy. Put differently, the question of why the West can only be answered by bringing together the great conceptual transformation of the scientific revolution and the effects of the Protestant Reformation that had been noted by Weber. That path of cultural synthesis must consider the facilitating effects of religion along with the emergence of the new print media, the crystallization of a public sphere, and the rising rates of literacy. Indeed, as a sociological factor, the unparalleled rising rates of literacy in Europe were a major contributor to the great ascendance and divergence that set Europe off socially and economically from other parts of the world. Furthermore, the rise of literacy in Europe must be traced back at least to the early sixteenth century, when there was no parallel development in China, Asia broadly, or the Muslim world. At the same time, those developments have to be read against the long developmental background from the late Middle Ages.
As astronomy went through its revolutionary transformation from the time of Copernicus to Newton, the ground shifted from mathematical modeling to deep probings of the structures of the universe. We have seen already that seventeenth-century European natural philosophers had stumbled onto the mysterious forces of magnetism and electricity. Solving the problem of the orbits of the planets was not just a mathematical problem based on observational parameters for the seven planets. Sooner or later, astronomers would be released from the confines of geometry to the soaring world of philosophers of the universe such as Galileo wished to be. That meant grasping the forces of nature, both large and small.
Philosophers of the Universe
This was to be the new age of cosmology. Inevitably, it required working toward a unified science of terrestrial and celestial physics. Kepler was the first of these new philosophers of the universe to propose a new astronomy based on physical causes, something missing from Copernicus's great work. Yet, even he did not envision a unified terrestrial and celestial physics, as Newton did. He had a grand vision for the shape of astronomy based on physical causes, but just what that meant in Kepler's time, nobody could say. He laid out that vision in an insight from 1605 that was not published until the appearance of his New Astronomy of 1609:
I am much occupied with the investigation of the physical causes. My aim in this is to show that the celestial machine is to be likened not to a divine organism but rather to a clockwork…insofar as nearly all the manifold movements are carried out by means of a single, quite simple magnetic force, as in the case of a clockwork all motions [are caused] by a simple weight. Moreover I show how this physical conception is to be presented through calculation and geometry.
To propose a machinelike universe animated by a single force was audacious. Galileo was a committed Copernican, and his extraordinary visual exploration of the heavens using the telescope yielded the discovery of the cratered surface of the moon, the satellites of Jupiter, and the phases of Venus, all of which supported the Copernican hypothesis as he saw it. Yet, he did not have a grander vision of celestial physics beyond the success of the Copernican system.
The ideas about magnetism and electricity that began to be widely discussed by natural philosophers at the outset of the seventeenth century take us deep into the mysteries of the fundamental forces of nature. Even at the end of the twentieth century, this part of modern physics had many unanswered questions, including just how to think about the four basic forces of nature: strong, weak, gravitational, and electromagnetic. Today, perhaps electric and magnetic forces seem the simplest to comprehend, but in 1600, no one had even imagined the existence of “electricity.” William Gilbert stumbled onto it while divining the nature of magnetism. Only that innovation paved the way for the continuous study of electric forces throughout the seventeenth century. In the meantime, astronomy was about to be transformed from mere mathematical model-building to philosophical speculation about just what holds our universe together. But before we can approach that great intellectual struggle, we need to consider the discovery of the more subtle forces that bind our world, and that began to be glimpsed in the early seventeenth century.
Holding the World Together
The question of what holds the planets in their orbits was abruptly brought into focus in the late sixteenth century. In 1577, a comet appeared in Europe, seen by many observers, but especially Tycho Brahe. He was then the most accomplished European astronomer. He noticed that the path of the comet was such that it would have crashed through the crystalline spheres that were supposed to hold the planets and fixed stars in their orbits. If this comet on a path through a crystalline sphere did not cause a crash, then those spheres vanished. If the crystalline heavenly spheres were gone from the universe and therefore could not explain why the planets and fixed stars continued in their daily and yearly paths, then cosmological thinkers had to ask themselves if there is not some intrinsic force in nature that attracts objects to each other. This was the deeper background to Kepler's thinking in 1605.
The unconventional correspondence between physicists Albert Einstein and Felix Ehrenhaft, especially at the height of the alleged production by the latter of magnetic monopoles, is examined in the following paper. Almost unknown by the general public, it is sometimes witty, yet it can be pathetic, and certainly bewildering. At one point the arguments they exchanged became a poetic duel between Einstein and Ehrenhaft's wife. Ignored by conventional Einstein biographies, this episode took place during the initial years of the Second World War, but was rooted in disputes dating back to the early years of the twentieth century. The interesting intersection of a series of scientific controversies also highlights some aspects of the personal dramas involved, and after so many years the whole affair in itself is still intriguing.
This article presents evidence that an anonymous publication of 1573, a Letter sent by a gentleman of England [concerning …] the myraculous starre nowe shyning, was written by Thomas Digges, England's first Copernican. It tells the story of how it arose out of research commissioned by Elizabeth I's privy counsellors in response to the conventional argument of Jean Gosselin, librarian to Henri III of France, that the star was a comet which presaged wars. The text is significant because it seems to contain the observations and opinions that Digges held before he completed his other astronomical treatise, the groundbreaking Alae seu scalae mathematicae. It also casts some light on the development of Digges's radical and puritan views about the star, Copernican astronomy, the infinity of the universe and a belief that the ‘latter days’ of the world had arrived.
This essay analyses the circulation of political models and administrative practices drawn from the Enlightenment statecraft of metropolitan Portugal and their inscription in specific colonial contexts of Angola in the mid-eighteenth century. The purpose here is to show how these models had to be ‘unpacked’ when confronted with foreign contexts, reconfigured and even reinvented for local circumstances. During the 1750s, the Lisbon government conceived a new imperial project to territorialize the colony through the intellectual and physical appropriation of this Central African space. In order to do so, three levels of this administrative knowledge are distinguished: the quantification and systematization of information, cartography, and the archive. For each, this essay demonstrates how they were made available to, appropriated by or transformed by both the colonial and the African societies in the colonial context.
By looking at the fierce debates in the city of Carlsbad in Bohemia around the fabrication of medical salt by a local doctor, David Becher, from 1763 to 1784, the paper examines the interactions between different spheres or levels of circulation of knowledge in the Habsburg Empire. The dispute crystallized around the definition of the product, about its medical qualities and its relation with the water of the local mineral spring. The city's inhabitants contested the vision of the medical experts, fearing that the extraction of the medical salt from the spring water and its sale outside the town would have a negative effect on the number of visitors to the spa. Their vision implied a more or less ‘popularized’ form of alchemical thinking as it identified the mineral water with the extracted ‘salt’, conceived as the ‘essence’ of the water, produced by evaporation. The Carlsbad salt dispute highlights the complex interactions among the different networks in which knowledge circulated through the Habsburg Empire in the eighteenth century. The different actors relied on specific networks with different logics of discourse and different modes of circulation. In each case the relation between the local, the regional and the imperial had to be negotiated. The paper thus sketches out the different geographies of knowledge in the Habsburg Empire but also its localization in and around Carlsbad.
This paper examines the movement of the materials, ideas and practices that went into the construction of natural-historical observations in Paris and the French provinces – in particular, observations of insects. The paired notions of circulation and locality expose the complex dynamic at play in the production of knowledge about these mundane creatures. I show how the movement of things and people problematizes the notion of a single ‘centre of calculation’, even where a dominant figure like Réaumur was managing collections and producing authoritative texts. Réaumur was indeed managing the flow of observations, letters and specimens from his privileged vantage point in Paris, but he was not the only one doing the processing, and the objects and knowledge flowed in all directions. The paper uses correspondence among eighteenth-century naturalists of various sorts to get at the dynamics of circulation, tracing the movements of insects, bits of text or narrative, drawings, letters, questions, apparatus, books and people. My title refers to the activities of naturalists, who had to follow insects around in order to observe them, and to my own activity in following the insects in their movement through letters, conversations, specimen jars, drawings and texts. My research depends on the accumulation of details about experimental and observational practice, culled from the masses of letters that moved continually around Europe, much as the science of insects depended on the accumulation of details about insects – their physiology, habits, metamorphosis and place in the human economy and the economy of nature.
John Fleming (1785–1857) was a minister of the Church of Scotland, but in his time at the University of Edinburgh he had also studied geology and zoology. In the tradition of the country parson who was also a talented and knowledgeable naturalist, he published his first works on the geology of the Shetland Islands while serving there as a minister. His subsequent works led to his being offered the chair of natural philosophy at the University of Aberdeen, and subsequently at the newly created chair of natural history at the Free Church College in Edinburgh. The two-volume Philosophy of Zoology was published in 1822, and the young Charles Darwin is recorded as borrowing it from the library of Edinburgh University in 1825/6. His intention in the book was to 'collect the truths of Zoology within a small compass, and to render them more intelligible, by a systematical arrangement'.
Drawing on the rich but mostly overlooked history of Guatemala's anti-smallpox campaigns in the 1780s and 1790s, this paper interweaves an analysis of the contribution of colonial medical knowledges and practical experiences with the construction and implementation of imperial science. The history of the anti-smallpox campaigns is traced from the introduction of inoculation in Guatemala in 1780 to the eve of the Spanish Crown-sponsored Royal Maritime Vaccination Expedition in 1803. The paper first analyses the development of what Guatemalan medical physician José Flores called his ‘local method’ of inoculation, tailored to material and cultural conditions of highland Maya communities, and based on his more than twenty years of experience in anti-smallpox campaigns among multiethnic populations in Guatemala. Then the paper probes the accompanying transformations in discourses about health through the anti-smallpox campaigns as they became explicitly linked to new discourses of moral responsibility towards indigenous peoples. With the launch of the Spanish Vaccination Expedition in 1803, anti-smallpox efforts bridged the New World, Europe and Asia, and circulated on a global scale via the enactment of imperial Spanish health policy informed, in no small part, by New World and specifically colonial Guatemalan experiences with inoculation in multiethnic cities and highland Maya towns.
The history of contraceptives met the history of drugs long before the invention of the contraceptive pill. In the first half of the twentieth century, numerous pharmaceutical laboratories, including major ones, manufactured and marketed chemical contraceptives: jellies, suppositories, creams, powders and foams applied locally to prevent conception. Efforts to put an end to the marginal status of these products and to transform them into ‘ethical’ drugs played an important role in the development of standardized laboratory tests of efficacy of contraceptive preparations; debates on the validity of such tests; evaluation of the long-term toxicity of chemical compounds; and the rise of collaborations between activists, non-profit organizations and the pharmaceutical industry. Chemical contraceptives were initially associated with quack medicine, shady commercial practices and doubtful morality. Striving to change the status of contraceptives and to promote safe and efficient products that reduced fertility in humans shaped some of the key features of the present-day production and regulation of pharmaceuticals.
While the impetus theory is often regarded as a non-Aristotelian theory that could not have emerged within the development of Aristotelianism, I argue that it is essentially Aristotelian. Given the state of the theories of body, movement and sexual reproduction and the development of the theory of the four elements in the Latin West at the end of the thirteenth century, the impetus theory was probably developed as an application to projectiles of Aristotle's theories of the male semen and of family resemblance. In addition, the impetus theory was even a convenient expedient to simplify the Aristotelian theory of movement and prevent it from drifting into non-Aristotelian territory.
Up to modernity, the majority of Christian thinkers presupposed the world of creation to be composed of two parts: the material and the spiritual, existing alongside one another as independent yet interacting realms. In the traditional exegesis of Genesis 1, for example, the creation of light in Genesis 1:3 (“Let there be light”) was interpreted as a spiritual light for spiritual beings in a spiritual world (kosmos noētos), preceding the creation of the corporeal light of the sun in the empirical world (kosmos aisthētikos) in Genesis 1:14.
This two-stock universe lost its plausibility with the advent of classical physics in the seventeenth century, when nature came to be seen as a seamless unity. The scientific intuition of the oneness of the universe, however, was initially combined with a narrow interpretation of the nature of the material. As Isaac Newton (1642–1727) argued in his Opticks, matter is basically atomic: “solid, massy, hard, impenetrable, moveable particles”. According to Newton, these particles, formed in the beginning by God and held together by the mechanical laws of nature, serve the divine purpose of the universe while at the same time being embraced by God, who is ubiquitously at work ordering, shaping, and reshaping the universe. For Newton, mechanism and theism were two sides of the same coin. How else to explain the orderliness of the otherwise arraying particles?
The use of informational terms is widespread in molecular and developmental biology. The usage dates back to Weismann. In both protein synthesis and in later development, genes are symbols, in that there is no necessary connection between their form (sequence) and their effects. The sequence of a gene has been determined by past natural selection, because of the effects it produces. In biology, the use of informational terms implies intentionality, in that both the form of the signal, and the response to it, have evolved by selection. Where an engineer sees design, a biologist sees natural selection.
A central idea in contemporary biology is that of information. Developmental biology can be seen as the study of how information in the genome is translated into adult structure, and evolutionary biology of how the information came to be there in the first place. Our excuse for writing a chapter concerning topics as diverse as the origins of genes, of cells, and of language is that all are concerned with the storage and transmission of information.
(Szathmáry and Maynard Smith, 1995)
Let us begin with the notions involved in classical information theory … These concepts do not apply to DNA because they presuppose a genuine information system, which is composed of a coder, a transmitter, a receiver, a decoder, and an information channel in between. No such components are apparent in a chemical system (Apter and Wolpert, 1965). To describe chemical processes with the help of linguistic metaphors such as “transcription” and “translation” does not alter the chemical nature of these processes.[…]
Scientists who speculate on philosophical questions usually agree that classical materialism – the view that reality consists of nothing but small massy particles bumping into one another in an absolute and unique space–time – is intellectually dead. Accounts of the universe now regularly involve notions such as that of manifold space–times, quantum realities that exist at a more ultimate level than, and are very different from, massy particles in one specific space, and informational codes that contain instructions for building complex integrated structures displaying new sorts of emergent property.
What this suggests is that the nature of the reality investigated by physics and biology is much more complex and mysterious than some Newtonian materialists thought (though of course Newton himself was as far from being a materialist as one can get). In particular, the role of information in any account of our universe has come to take on a new importance.
Most contributors to this volume distinguish three main types of information – Shannon information, “shaping” information, and semantic information.
Shannon information is a matter of how to input the maximum amount of information into a closed physical system. It is concerned, it might be said, with quantity rather than quality, in that it totally ignores questions of the significance or function of the information that a physical system might contain. This is a technical matter for information technologists, and I shall not consider it further.
A host of surveys indicate that what Christians, and indeed other religious believers, today affirm as ‘real’ fails to generate any conviction among many of those who seek spiritual insight and who continue regretfully as wistful agnostics in relation to the formulations of traditional religions – notably Christianity in Europe, and in intellectual circles in the USA. Many factors contribute to this state of affairs, but one of these, I would suggest, is that the traditional language in which much Christian theology, certainly in its Western form, has been and is cast is so saturated with terms that have a supernatural reference and colour that a culture accustomed to think in naturalistic terms, conditioned by the power and prestige of the natural sciences, finds it increasingly difficult to attribute any plausibility to it. Be that as it may, there is clearly a pressing need to describe the realities that Christian belief wishes to articulate in terms that can make sense to that culture without reducing its content to insignificance.
Correspondingly, there is also a perennial pressure, even among those not given to any form of traditional religiosity, to integrate the understandings of the natural world afforded by the sciences with very real, ‘spiritual’ experiences, which include interactions with other people and awareness of the transcendent.
Both of these pressures in contemporary life accentuate the need to find ways of integrating ‘talk about God’ – that is, theology – with the world view engendered and warranted by the natural sciences.
The most important single issue in the conversation of theology with science is whether and how God acts in or influences the world. Here I shall ask whether the notion of information can help theologians address this question. It is well known that traditional philosophies and theologies intuited a universal “informational” principle running through all things. Their sense that “Mind,” “Wisdom,” or “Logos” inhabits and globally patterns the universe has been repeated in widely different ways time and again: in ancient Greek philosophy, the Wisdom literature of the Hebrew Scriptures, Philo, early Christianity, Stoicism, Hegel, Whitehead, and others. But can the intuition that the universe is the bearer of an overarching meaning – of an informational principle actively present to the entire cosmic process – have any plausibility whatsoever in the age of science?
These days, after all, one must hesitate before connecting the Logos of theology immediately to patterns in nature. The life process as seen through the eyes of evolutionary biologists, to cite the main reason for such reluctance, scarcely seems to be the embodiment of any universal divine principle of meaning or wisdom. Contrary to the picture of cosmic order expressed in much religious thought, evolution involves seemingly endless experimentation with different “forms,” most of which are eventually discarded and replaced by those only accidentally suited to the demands of natural selection.