To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
‘Read until you hear the voices’; so the maxim goes for those who would engage with the Victorians. Let us try with Thomas Henry Huxley:
A great chapter in the history of the world is written in the chalk. Few passages in the history of man can be supported by such an overwhelming mass of direct and indirect evidence as that which testifies to the truth of the fragment of the history of the globe, which I hope to enable you to read, with your own eyes, tonight. Let me add, that few chapters of human history have a more profound significance for ourselves. I weigh my words well when I assert, that the man who should know the true history of the bit of chalk which every carpenter carries about in his breeches-pocket, though ignorant of all other history, is likely, if he will think his knowledge out to its ultimate results, to have a truer, and therefore a better, conception of this wonderful universe, and man's relation to it, than the most learned student who is deep-read in the records of humanity and ignorant of those of Nature.
The culture of science is deeply influenced and conditioned by the socio-political realities of both time and locale. Pre-colonial India, for example, was no tabula rasa. It had a vigorous tradition in at least the realms of mathematics, astronomy and medicine. But gradual colonization made a big dent. It brought forth a massive cultural collision which influenced profoundly the cognitive and material existence of both the colonizer and the colonized.
In the autumn of 1851, on the occasion of the American Institute of New York's annual fair, the Boston chemist and geologist Charles Jackson chose as the subject of his address the ‘Encouragement and Cultivation of the Sciences in the United States’. Playing on popular enthusiasm for science and technology, Jackson rehearsed the wondrous progress of the arts and the role of science in that progress. Science was the ‘Hand-maiden of the Arts’, and most assuredly the ‘maid of honor’, he declared, for science was the ‘progressive power’ which inspired new inventions. These were commonplace assumptions of the time, and surely no one in his audience would have disputed them.
Very few historians have so far turned their attention to the history of chemical engineering, a discipline which impinges on aspects of industrial life as diverse as the manufacture of consumer goods and the generation of nuclear power. However, a number of practising and retired chemical engineers have produced accounts of the late nineteenth-century beginnings and subsequent development of chemical engineering. Their work has set the scene for more recent papers by two academic historians, Colin Divall and James F. Donnelly. There are two particular issues which are frequently discussed, and about which there is a general consensus in this body of work: the origins of academic chemical engineering, and the ways in which its development in the United States differed from that in Europe. In this paper I shall cast doubt on the now conventional picture of these two aspects of the history of chemical engineering.
Between 1856 and 1858, a group of entrepreneurs and engineers led by the American Cyrus Field and the Englishmen J. W. Brett, Charles Bright and E. O. Wildman Whitehouse sought to lay a telegraph cable across the Atlantic from Ireland to Newfoundland. Their projected cable would be far longer, far more expensive, and far more difficult to lay than any previously attempted; that such an ambitious undertaking was launched and quickly drew financial backing was testimony to the technological enthusiasm of the mid-Victorian era. After many setbacks, the cable was successfully completed early in August 1858. The first messages it carried were met with rapturous excitement on both sides of the Atlantic – making its failure after just a few weeks of fitful service all the more humiliating. Identifying the causes of that failure, and assigning blame for them, became crucial to ensuring the future of transoceanic cable telegraphy. Were the causes of the failure intrinsic to the enterprise, and the vision of a network of transoceanic cables no more than an unrealistic dream? Or did the collapse of the cable result simply from a series of unfortunate and correctable errors? How those questions were answered in the autumn of 1858 would go far toward determining the prospects not only for renewing the Atlantic project, but also for any attempt to extend submarine cables more widely around the world.