To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A resurgence of interest has occurred in ‘Newton's method of approximation’ for deriving the roots of equations, as its repetitive and mechanical character permits ready computer use. If x = α is an approximate root of the equation f(x) = 0, then the method will in most cases give a better approximation as
where f′(x) is the derivative of the function into which α has been substituted. Older books sometimes called it ‘the Newton–Raphson method’, although the method was invented essentially in the above form by Thomas Simpson, who published his account of the method in 1740. However, as if through a time-warp, this invention has migrated back in time and is now matter-of-factly placed by historians in Newton's De analysi of 1669. This paper will describe the steps of this curious historical transposition, and speculate as to its cause.