To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Four new malformations observed in blue shark embryos in the western coast of Baja California Sur, Mexico are reported in this study. The embryos of blue shark samples were obtained on board the industrial fishing boat ‘Damasta’; the organisms were frozen and transferred to CIBNOR Fish Ecology Laboratory where the corresponding measurements were taken and malformations observed. The first malformation was the presence of one nostril in two female embryos that showed short and crushed snouts. The second one was observed in a female with two jaws and the middle portion of the column trunk in screw-shape. The third one was an embryo with dicephaly, two separate vertebral columns, two first dorsal fin pairs, absence of the second dorsal fin, five pelvic fins and two joint caudal fins. The fourth malformation observed was an embryo with incomplete development and undifferentiated sex. Malformations are still a mystery and also an object of study because they affect different organisms, not only sharks but also fish. It is highly relevant to know the causes and perform further studies to understand if the origin is either genetic or anthropogenic.
Diel vertical migration of the cutlassfish Trichiurus japonicus larvae were investigated by consecutive 24-h collections at 3-h intervals at a station in the central Seto Inland Sea, Japan in June and September. Only one larva was collected in June 2017, while 224 and 40 larvae were collected in September 2016 and 2017, respectively. Larvae were present only at depths of ≥ 11 m during the day, whereas they were present at depths of 1, 6, 11 and 16 m during the night. Migration was observed in larvae in which swim bladder formation was completed. A similar pattern, namely nocturnal occurrence at shallow depths only of the developed larvae, was observed in another 24-h survey, suggesting that the swim bladder regulates the upward movement of larvae at night.
Despite alterations caused by anthropogenic activities in Singaporean coral reefs, the sponge communities are quite diverse and Xestospongia testudinaria is one of the most common sponge species. In the present study, we used 16S rRNA gene barcoded pyrosequencing to characterize and compare bacterial communities from different biotopes (sponge, seawater and sediment) and to identify dominant bacterial symbionts of X. testudinaria in a Singaporean coral reef ecosystem. Our results showed that biotope appears to affect the richness, composition and abundance of bacterial communities. Proteobacteria was the most abundant phylum in sediment and seawater whilst Chloroflexi was more abundant in X. testudinaria. Members of the order Caldilineales (fermentation of organic substrates), Chromatiales (purple sulphur bacteria), Rhodospirillales (purple non-sulphur bacteria) and Syntrophobacterales (sulphate-reducing bacteria) were relatively more abundant in X. testudinaria samples.
The Suape coastal zone has suffered since the 1980s the effects of anthropogenic action due to the construction of the industrial complex of Suape. This work aimed to evaluate the environmental conditions and possible eutrophication processes of the area. Six campaigns were carried out, three in the dry season (November 2015, January and April 2016) and three in the rainy season (July 2015, July and August 2016). Water samples were collected at the surface during low tide and high tide, in neap tides. Salinity ranged from 19.75 to 37.20, the dissolved oxygen rate ranged from 61.75 to 125.90% and chlorophyll-a from 0.02 to 3.48 mg m−3. Water transparency, temperature, nitrate and silicate presented significant seasonal variation, the concentrations of nutrients being higher in the rainy season and the others in the dry season. Water transparency, salinity, dissolved oxygen saturation and chl-a <20 µm showed significant differences for tide, being higher at high tide, and at low tide for chl-a of <20 µm. The low content of dissolved inorganic nutrient salts and chl-a were indicative of an area still free of eutrophication. Anthropogenic changes in the environment have led to greater marine interference and consequently to a reduction of the productive capacity of the system.
Differences between sexes may arise either during development or at the adult stage only. In both cases growth rate during development and level of allometry may influence sexual dimorphism and ontogenetic trajectories. To analyse the period in which sexual dimorphism appears during ontogeny and assess allometric ontogeny in Sesarmidae crabs, we evaluated: (1) sexual dimorphism in shape and size of the carapace and cheliped propodus of juveniles and adult Aratus pisonii and Armases rubripes, and (2) their ontogenetic trajectory, using geometric morphometric (GM) techniques. We tested the hypothesis that sexual dimorphism in sesarmid crab shape takes place before the puberty moult. In Aratus pisonii there was sexual dimorphism in the shape of the carapace in juveniles (before puberty moult) and variation between juveniles and adults was size-dependent, especially in the frontal region of the carapace. For Armases rubripes this shape sexual dimorphism was detected only after the puberty moult (adult phase). For males, carapace variation between juveniles and adults was also size-dependent, especially in the carapace frontal region, but for females, there was a change in shape with different trajectories. Our results also indicated that shape variation is a common pattern during growth for Sesarmidae species. This ontogenetic shape variation may be associated with spatial partitioning between juveniles and adults.
Coastal ecosystems have been increasingly subjected to poor water quality. Remote sensing has been used to monitor water quality, but few studies have integrated remotely sensed data with compositional and/or abundance data of coral reef taxa. In the present study, fish biomass was assessed along the Jakarta Bay Thousand Island reef system and variation in the biomass of selected fish families related to substrate cover and remotely sensed data. Overall, fish biomass and the biomass of each of the families Acanthuridae, Apogonidae, Caesionidae, Chaetodontidae, Ephippidae, Pomacentridae, Labridae and the subfamily Scaridae were much higher mid- and offshore than inshore. Substrate cover and chlorophyll-a concentrations proved to be significant predictors of spatial variation in fish biomass, suggesting an important impact of reef degradation and eutrophication on reef fish abundance.
High definition video from a towed camera system was used to describe the deep-sea benthic habitats within an elongate depression located at the western margin of Rockall Bank in the Hatton–Rockall Basin. At depths greater than 1190 m, an extensive area (10 km long by 1.5 km wide) of what appeared to be reduced sediments, bacterial mats and flocculent matter indicated possible cold-seep habitat. Plumes of sediment-rich fluid were observed alongside raised elongate features that gave topographic relief to the otherwise flat seafloor. In the deepest section of the depression (1215 m) dense flocculent matter was observed suspended in the water column, in places obscuring the seabed. Away from the bacterial mats, the habitat changed rapidly to sediments dominated by tube-dwelling polychaete worms and then to deep-sea sedimentary habitats more typical for the water depth (sponges and burrowing megafauna in areas of gentle slopes, and coral gardens on steeper slopes).
Brain and behaviour are intrinsically linked. Animals demonstrate a huge and complex repertoire of behaviours, so how can specific behaviours be mapped onto the complicated neural circuits of the brain? Highlighting the extraordinary advances that have been made in the field of behavioural neuroscience over recent decades, this book examines how behaviours can be understood in terms of their neural mechanisms. Each chapter outlines the components of a particular behaviour, discussing laboratory techniques, the key brain structures involved, and the underpinning cellular and molecular mechanisms. Commins covers a range of topics including learning in a simple invertebrate, fear conditioning, taste aversion, sound localization, and echolocation in bats, as well as more complex behaviours, such as language development, spatial navigation and circadian rhythms. Demonstrating key processes through clear, step-by-step explanations and numerous illustrations, this will be valuable reading for students of zoology, animal behaviour, psychology, and neuroscience.
Despite global deterioration of coral reef health, not all reef-associated organisms are in decline. Bioeroding sponges are thought to be largely resistant to the factors that stress and kill corals, and are increasing in abundance on many reefs. However, there is a paucity of information on how environmental factors influence spatial variation in the distribution of these sponges, and how they might be affected by different stressors. We aimed to identify the factors that explained differences in bioeroding sponge abundance and assemblage composition, and to determine whether bioeroding sponges benefit from the same environmental conditions that can contribute towards coral mortality. Abundance surveys were conducted in the Wakatobi region of Indonesia on reefs characterized by different biotic and abiotic conditions. Bioeroding sponges occupied an average of 8.9% of available dead substrate and variation in abundance and assemblage composition was primarily attributed to differences in the availability of dead substrate. Our results imply that if dead substrate availability increases as a consequence of coral mortality, bioeroding sponge abundance is also likely to increase. However, bioeroding sponge abundance was lowest on a sedimented reef, despite abundant dead substrate. This suggests that not all forms of coral mortality will benefit all bioeroding sponge species, and sediment-degraded reefs are likely to be dominated by a few resilient bioeroding sponge species. Overall, we demonstrate the importance of understanding the drivers of bioeroding sponge abundance and assemblage composition in order to predict possible impacts of different stressors on reefs communities.