To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Antibiotics are designed to affect gut microbiota and subsequently gut homeostasis. However, limited information exists about short- and long-term effects of early antibiotic intervention (EAI) on gut homeostasis (especially for the small intestine) of pigs following antibiotic withdrawal. We investigated the impact of EAI on specific bacterial communities, microbial metabolites and mucosal immune parameters in the small intestine of later-growth-stage pigs fed with diets differing in CP levels. Eighteen litters of piglets were fed creep feed with or without antibiotics from day 7 to day 42. At day 42, pigs within each group were offered a normal- or low-CP diet. Five pigs per group were slaughtered at days 77 and 120. At day 77, EAI increased Enterobacteriaceae counts in the jejunum and ileum and decreased Bifidobacterium counts in the jejunum and ileum (P < 0.05). Moreover, tryptamine, putrescine, secretory immunoglobulin (Ig) A and IgG concentrations in the ileum and interleukin-10 (IL-10) mRNA and protein levels in the jejunum and ileum were decreased in pigs with EAI (P < 0.05). At day 120, EAI only suppressed Clostridium cluster XIVa counts in the jejunum and ileum (P < 0.05). These results suggest that EAI has a short-term effect on specific bacterial communities, amino acid decarboxylation and mucosal immune parameters in the small intestine (particularly in the ileum). At days 77 and 120, feeding a low-CP diet affected Bifidobacterium, Clostridium cluster IV, Clostridium cluster XIVa and Enterobacteriaceae counts in the jejunum or ileum (P < 0.05). Moreover, feeding a low-CP diet increased the concentrations of Igs in the jejunum and decreased pro-inflammatory cytokines levels in the jejunum and ileum (P < 0.05). At day 120, feeding a low-CP diet increased short-chain fatty acid concentrations, reduced ammonia and spermidine concentrations and up-regulated genes related to barrier function in the jejunum and ileum (P < 0.05). These results suggest that feeding a low-CP diet changes specific bacterial communities and intestinal metabolite concentrations and modifies mucosal immune parameters. These findings contribute to our understanding on the duration of the impact of EAI on gut homeostasis and may provide basis data for nutritional modification in young pigs after antibiotic treatment.
Veterinarians often give advice in a persuasive form, a style that has been shown to evoke resistance to change in clients experiencing psychological ambivalence (i.e. those who see both advantages and disadvantages to changing). With this style of communication, veterinarians run the risk of counteracting their purpose to encourage clients to follow recommendations. Motivational interviewing (MI) is a client-centered communication methodology that aims to facilitate clients’ internal motivation to change. In MI, Change Talk represents clients’ own statements expressing consideration of, motivation for or commitment to behavior change and has been shown to be strongly correlated with behavior change. Sustain Talk is corresponding statements related to maintaining the status quo. The aim of this exploratory study was to evaluate the potential of MI to facilitate behavior change in veterinary herd health management (VHHM) by investigating the effect of dairy cattle veterinarians’ MI skills on client Change and Sustain Talk. We recorded VHHM consultancies on 170 Swedish cattle farms performed by 36 veterinarians, randomly distributed into 2 groups: MI veterinarians (n = 18) had received 6-month training in MI and control veterinarians (n = 18) had not received any training. Veterinarians’ MI skills were assessed using the Motivational Interviewing Treatment Integrity coding system 4.2.1 and categorized as poor_untrained, poor_trained, near moderate and moderate. Client communication was coded using the Client Language Easy Rating coding system. The effect of MI skills on Change Talk, Sustain Talk and Proportion of Change Talk(Change Talk divided by the sum of Sustain Talk plus Change Talk) was investigated using cross-classified regression models with random intercepts for veterinarian and client (farm). The models also included additional explanatory variables (e.g. type of veterinarian and client’s satisfaction with the consultation). The veterinarian’s MI skills were associated with the client’s Change Talk, but results regarding Sustain Talk or Proportion of Change Talk were inconclusive. Clients of veterinarians reaching the highest (i.e. moderate) MI skills expressed 1.5 times more Change Talk than clients of untrained veterinarians. Clients of general large animal practitioners expressed less Sustain Talk than clients of animal health veterinarians and had higher Proportion of Change Talk. Results indicate that learning to practice MI may be one means to improve adherence to veterinary recommendations and to improve efficiency in VHHM services.
Remarkable increases in the production of dairy animals have negatively impacted their tolerance to heat stress (HS). The evaluation of the effect of HS on milk yield is based on the direct impact of HS on performance. However, in practical terms, HS also exerts its influence during gestation (indirect effect). The main purpose of this study was to identify and characterize the genotype by environment interaction (G × E) due to HS during the last 60 days of gestation (THI_g) and also the HS postpartum (THI_m) over first lactation milk production of Brazilian Holstein cattle. A total of 389 127 test day milk yield (TD) records from 1572 first lactation Holstein cows born in Brazil (daughters of 1248 dams and 70 sires) and the corresponding temperature–humidity index (THI) obtained between December 2007 and January 2013 were analyzed using different random regression models. Cows in the cold environment (THI_g = 64 to 73) during the last 60 days of gestation produced more milk than those cows in a hot environment (THI_g = 74 to 84), particularly during the first 150 days of lactation (DIM). The heritabilities (h2) of TD were similar throughout DIM for cows in THI_g hot (0.11 to 0.20) or (0.10 to 0.22), while the genetic correlations (rg) for TD between these two environments ranged from 0.11 to 0.52 along the first 250 DIM. The h2 estimates for TD across THI_m were similar for cows in THI_g hot (0.07 to 0.25) and THI_g cold (0.08 to 0.19). The rg estimates ranged from 0.17 to 0.42 along THI_m between TD of cows in cold and hot THI_g. The results were consistent in demonstrating the existence of an additional source of G × E for TD due to THI_g and THI_m. The present study is probably the first to provide evidence of this source of G × E; further research is needed because of its importance when the breeding objective is to select animals that are more tolerant to HS.
The meat quality of chicken is an important factor affecting the consumer’s health. It was hypothesized that n-3 polyunsaturated fatty acid (n-3 PUFA) could be effectively deposited in chicken, by incorporating antioxidation of soybean isoflavone (SI), which led to improved quality of chicken meat for good health of human beings. Effects of partial or complete dietary substitution of lard (LA) with linseed oil (LO), with or without SI on growth performance, biochemical indicators, meat quality, fatty acid profiles, lipid-related health indicators and gene expression of breast muscle were examined in chickens. A total of 900 males were fed a corn–soybean meal diet supplemented with 4% LA, 2% LA + 2% LO and 4% LO and the latter two including 30 mg SI/kg (2% LA + 2% LO + SI and 4% LO + SI) from 29 to 66 days of age; each of the five dietary treatments included six replicates of 30 birds. Compared with the 4% LA diet, dietary 4% LO significantly increased the feed efficiency and had no negative effect on objective indices related to meat quality; LO significantly decreased plasma triglycerides and total cholesterol (TCH); abdominal fat percentage was significantly decreased in birds fed the 4% LO and 4% LO + SI diets. Chickens with LO diets resulted in higher contents of α-linolenic acid (C18:3n-3), EPA (C20:5n-3) and total n-3 PUFA, together with a lower content of palmitic acid (C16:0), lignoceric acid (C24:0), saturated fatty acids and n-6:n-3 ratio in breast muscle compared to 4% LA diet (P < 0.05); they also significantly decreased atherogenic index, thrombogenic index and increased the hypocholesterolemic to hypercholesterolemic ratio. Adding SI to the LO diets enhanced the contents of EPA and DHA (C22:6n-3), plasma total superoxide dismutase, reduced glutathione (GSH)/oxidized glutathione and muscle GSH content, while decreased plasma total triglyceride and TCH and malondialdehyde content in plasma and breast muscle compared to its absence (P < 0.05). Expression in breast muscle of fatty acid desaturase 1 (FADS1), FADS2, elongase 2 (ELOVL2) and ELOVL5 genes were significantly higher with the LO diets including SI than with the 4% LA diet. Significant interactions existed between LO level and inclusion of SI on EPA and TCH contents. These findings indicate that diet supplemented with LO combined with SI is an effective alternative when optimizing the nutritional value of chicken meat for human consumers.
Tail-biting occurs pre-weaning, but literature on tail damage during lactation and on the development of damage over time is sparse, especially for non-docked piglets. We assessed the prevalence of tail damage in non-docked piglets in a commercial Danish piggery during the lactation and weaning period, and investigated the within-animal association of tail lesions pre- and post-weaning. Non-docked piglets (n = 741) from 51 loose-housed sows were individually marked and tracked from birth to 9 weeks (w9) of age. Tail damage was scored during lactation at w1 and w4, and once a week post-weaning (average weaning age 30 days) at w6 to w9. The within-animal association of tail damage before and after weaning was investigated at pig level using generalized mixed models. Tail damage was prevalent already pre-weaning. During the lactation period, the prevalence of tail lesions was 5% at w1 and 42% at w4, with the most prevalent score being ‘superficial damages’ (66.7%, score 1; pre-weaning scheme: 0 = no damage, 3 = tail wound). Post-weaning, 45% of pigs had a tail lesion at least once over the four assessments, with 16.7% of pigs having a tail lesion at least at two assessments. The majority of lesions were ‘minor scratches’ (34.2%, score 1; post-weaning scheme: 0 = no damage, 4 = wound – necrotic tail end) and a ‘scabbed wound’ (19.9%, score 3). The number of pigs with lesions as well as wound severity increased over time. More pigs had a tail wound at w8 (15%, P < 0.001 and < 0.01) and w9 (19%, P < 0.001 and< 0.001) compared to w6 (2.7%) and w7 (5.6%). Pigs with tail lesions pre-weaning (w1: OR 3.0, 95% CI 0.9 to 10.2; w4: OR 3.4, 95% CI 2.0 to 5.8) had a significantly higher risk of having a wound post-weaning, and pigs with lesions at w4 additionally were at a higher risk (OR 3.0, 95% CI 1.8 to 5.1) of having a lesion over several assessments. Females compared to castrated males had a significantly lower risk of having tail lesions at w1 (OR 0.3, 95% CI 0.1 to 0.8). Similarly, females were at a significantly lower risk (OR 0.5, 95% CI 0.4 to 0.9) of having a wound post-weaning, and tended to have a lower risk of having lesions over several assessments (OR 0.7, 95% CI 0.5 to 1.2). Our study confirmed that tail damage is prevalent already during the lactation period, and that pre-weaning tail damage is predictive of tail wounds post-weaning.
Dual energy X-ray absorptiometry (DEXA) is an imaging modality that has been used to predict the computed tomography (CT)-determined carcass composition of multiple species, including sheep and pigs, with minimal inaccuracies, using medical grade DEXA scanners. An online DEXA scanner in an Australian abattoir has shown that a high level of precision can be achieved when predicting lamb carcass composition in real time. This study investigated the accuracy of that same online DEXA when predicting fat and lean percentages as determined by CT over a wide range of phenotypic and genotypic variables across 454 lambs over 6 kill groups and contrasted these results against the current Australian industry standard of grade-rule (GR) measurements to grade carcasses. Lamb carcasses were DEXA scanned and then CT scanned to determine CT Fat % and CT Lean %. All phenotypic traits and genotypic information, including Australian Sheep Breeding Values, were recorded for each carcass. Residuals of the DEXA predicted CT Fat % and Lean %, and the actual CT Fat % and Lean % were calculated and tested against all phenotypic and genotypic variables. Excellent overall precision was recorded when predicting CT Fat % (R2 = 0.91, RMSE = 1.19%). Small biases present for sire breed, sire type, dam breed, hot carcass weight and c-site eye muscle area could be explained by a regression paradox; however, biases among kill group (−0.73% to 1.01% for CT Fat %, −1.48% to 0.76% for CT Lean %) and the Merino sire type (0.36% for CT Fat %, −0.73% for CT Lean %) could not be explained by this effect. Over the large range of phenotypic and genotypic variation, there was excellent precision when predicting CT Fat % and CT Lean % by an online DEXA, with only minor biases, showing superiority to the existing Australian standard of GR measurements.
Obestatin is a gastrointestinal peptide having wide-ranging effects on cell proliferation; however, its mechanism of action remains poorly understood. Thus, the aim of the study was to elucidate the effect of exogenous obestatin on the postnatal structural development of the small intestine. Seven-day-old piglets with an average BW of 1.56 ± 0.23 kg were divided into four groups (n = 10) that received intragastrically obestatin (2, 10 or 15 μg/kg BW) or vehicle. After a 6-day experimental period, morphological analysis of gastrointestinal tract and small intestine wall (mitosis and apoptosis indexes, histomorphometry of mucosa and muscularis layers) was performed. The study revealed a seemingly incoherent pattern of the histological structure of the small intestine among the experimental groups, suggesting that the effect of obestatin is both intestinal segment specific and dose dependent. Histomorphometric analysis of the small intestine showed that higher doses of obestatin seem to promote the structural development of the duodenum while simultaneously hindering the maturation of more distal parts of the intestine. Intragastric administration of obestatin increased the crypt mitotic index in all segments of the small intestine with the strongest pro-mitotic activity following the administration of obestatin at a dose of 10 and 15 μg/kg BW. The significant differences in the number of apoptotic cells in the intestinal villi among the groups were observed only in proximal jejunum and ileum. In conclusion, it seems that obestatin shows a broad-spectrum of activity in the gastrointestinal tract of newborn piglets, being able to accelerate its structural development. However, the varied effect depending on the intestinal segment or the concentration of exogenous obestatin causes that further research is needed to clarify the exact mechanism of this phenomenon.
Recent research has demonstrated that chemerin may take part in the regulation of reproduction. The aim of this study was to determine the expression of chemerin system – chemerin and its receptors, chemokine-like receptor 1 (CMKLR1), G protein-coupled receptor 1 (GPR1) and C-C chemokine receptor-like 2 (CCRL2) – in the porcine uterus during the oestrous cycle and early pregnancy, and in trophoblasts and conceptuses by real-time PCR and western blotting. Chemerin concentrations in uterine luminal flushings (ULF) were determined using ELISA test. In the endometrium, the highest expression of chemerin and GPR1 proteins was observed during the mid-luteal phase; CMKLR1, during the late luteal phase; and CCRL2, during the follicular phase of the cycle. In the myometrium, chemerin protein expression was enhanced during the early luteal phase, and chemerin receptor proteins were highly expressed during the follicular phase. In the endometrium of pregnant pigs, the highest expression of chemerin and CCRL2 protein was observed during implantation; CMKLR1, during placentation; and GPR1, during embryo migration. In the myometrium, chemerin and CCRL2 protein expression increased at the end of implantation, and the expression of CMKLR1 and GPR1 protein was enhanced during implantation. In the conceptuses and trophoblasts, the highest expression of chemerin system proteins was observed during placentation, with the exception of GPR1 protein in the trophoblasts. The highest concentrations of the analysed adipokine were observed in ULF during the luteal phase of the cycle and during maternal recognition of pregnancy. This is the first study to demonstrate that the expression of the chemerin system in the porcine uterus, conceptuses and trophoblasts, and chemerin concentrations in ULF are influenced by the hormonal milieu in different stages of the oestrous cycle and in early pregnancy. The present results also suggest that chemerin is implicated in the regulation of reproductive functions in pigs.
There is a requirement in some beef markets to slaughter bulls at under 16 months of age. This requires high levels of concentrate feeding. Increasing the slaughter age of bulls to 19 months facilitates the inclusion of a grazing period, thereby decreasing the cost of production. Recent data indicate few quality differences in longissimus thoracis (LT) muscle from conventionally reared 16-month bulls and 19-month-old bulls that had a grazing period prior to finishing on concentrates. The aim of the present study was to expand this observation to additional commercially important muscles/cuts. The production systems selected were concentrates offered ad libitum and slaughter at under 16 months of age (16-C) or at 19 months of age (19-CC) to examine the effect of age per se, and the cheaper alternative for 19-month bulls described above (19-GC). The results indicate that muscles from 19-CC were more red, had more intramuscular fat and higher cook loss than those from 16-C. No differences in muscle objective texture or sensory texture and acceptability were found between treatments. The expected differences in composition and quality between the muscles were generally consistent across the production systems examined. Therefore, for the type of animal and range of ages investigated, the effect of the production system on LT quality was generally representative of the effect on the other muscles analysed. In addition, the data do not support the under 16- month age restriction, based on meat acceptability, in commercial suckler bull production.
Addition of fats to the diets of ruminants has long been known to result in a reduction in enteric methane emissions. Tannins have also been used to reduce methane emissions but with mixed success. However, the effect of feeding fat in combination with tannin is unknown. Eight ruminally cannulated Holstein-Friesian cows were fed four diets in a double Latin-square, full crossover sequence. The treatments were 800 ml/day of water (CON), 800 g/day of cottonseed oil, 400 g/day of tannin, and 800 g/day of cottonseed oil and 400 g/day of tannin in combination (fat- and tannin-supplemented diet). Methane emissions were measured using open-circuit respiration chambers. Intake of basal diets was not different between treatments. Cows fed cottonseed oil had greater milk yield (34.9 kg/day) than those fed CON (32.3 kg/day), but the reduced concentration of milk fat meant there was no difference in energy-corrected milk between treatments. Methane yield was reduced when either cottonseed oil (14%) or tannin (11%) was added directly to the rumen, and their effect was additive when given in combination (20% reduction). The mechanism of the anti-methanogenic effect remains unclear but both fat and tannin appear to cause a reduction in fermentation in general rather than cause a change in the type of fermentation.
The use of modern prolific lines of rabbit does in intensive production systems leads to an increase in productivity but also causes a rise in several problems related to the does’ health status. Hence, the aim of this study was to investigate the effect of the litter size on the metabolic, inflammatory and plasma amino acid profile in rabbit does. The blood of 30 pregnant does was sampled on the 27th day of pregnancy. The does were retrospectively grouped according to the number of offspring into a high litter size group (HI, does with ≥ 12 kits; n = 16) and a low litter size group (LO, does with ≤ 11 kits; n = 14). Data were subjected to Pearson’s correlation analysis. Further, data were analysed in agreement to a completely randomized design in which the main tested effect was litter size. The linear or quadratic trends of litter size on parameters of interests were post hoc compared by using orthogonal contrasts. In addition, compared with the LO group, the HI group had lower levels of glucose (−5%; P < 0.01), zinc (−19%; P < 0.05), albumin (−6%; P < 0.05) and total cholesterol (−13%; P < 0.07), but the total bilirubin level was higher in the HI group (+14%; P < 0.05). Regarding the plasma amino acids, the HI group had lower concentrations of threonine (−15%), glycine (−16%), lysine (−16%) and tryptophan (−26%) and a higher level of glutamic acid (+43%; P < 0.05) compared with the LO group. The exclusively ketogenic amount of amino acids was lower (P < 0.06) in the HI (55.8 mg/100 ml) does compared with the LO does (56.8 mg/100 ml). These results show that a few days before delivery, rabbit does that gave birth to a higher number of offspring had a metabolic profile and an inflammatory status that was less favourable with respect to does who gave birth to a lower number of offspring. Moreover, the plasma amino acid profile points out that there was an enhanced catabolic condition in the rabbit does with a high number of gestated foetuses; it was likely related to the greater energy demand needed to support the pregnancy and an early inflammatory response.
Due to genetic selection for fast growth and high breast meat yield, commercial strains of broiler chickens and broiler breeders are predisposed to high feed intake; however, feeding broiler breeders ad libitum impairs their health and reproductive performance. Broiler breeders are feed-restricted throughout rearing to maintain health and performance, yet feed restriction results in hunger, feeding frustration and lack of satiety. The objective of this study was to examine the effect of alternative feeding strategies, including feed additives (separately or combined) and a fixed non-daily feeding schedule, on the feeding motivation and welfare of broiler breeders during rearing. At 3 weeks of age, 180 Ross 308 breeder pullets were allocated to 90 cages and fed with one of five isocaloric treatments: (1) daily control diet (control), (2) daily calcium propionate diet (CaP), (3) daily soybean hull diet (SBH), (4) daily alternative diet (alternative: CaP + SBH) and (5) 4/3 control diet (four on-feed days and three non-consecutive off-feed days per week). The CaP diet included calcium propionate at 1.4% from 3 to 6 weeks of age, and at 3.2% from 7 to 12 weeks of age, and the SBH diet contained soybean hulls included at 40%. The alternative diet included both soybean hulls and calcium propionate at the same inclusion rate as the SBH and CaP diets, respectively. Pullets were weighed and scored for feather coverage every week. A feed intake test was conducted at 3, 4, 8, 10 and 11 weeks of age for 10 min during on- and off-feed days. At 12 weeks of age, feather samples were analysed for fault bars. Data were analysed using linear mixed regression models, with cage nested in the models and age as a repeated measure. At 4 weeks of age, pullets fed soybean hull-enriched diets (SBH and alternative diets) and those on the 4/3 schedule had lower feed intake than control pullets (P = 0.02). Feathers from pullets fed the SBH diet had fewer fault bars than those fed the CaP diet (P = 0.04). The results indicated that the inclusion of soybean hulls (alone or combined with calcium propionate) and a 4/3 feeding schedule can reduce feeding motivation of broiler breeders during early rearing.
Single concentrate feeds are mixed together forming compound feeds for cattle. However, knowledge regarding the potential interactions (associative effects) between the feeding values of single feeds in compound feeds is lacking. The main objective of the present study was to evaluate ruminal fermentation characteristics and feeding values of eight industrially produced compound feeds in mash form from their constituent single feeds for dairy cows through in vitro assays. Additivity was given for gas production (GP), digestibility of organic matter (dOM) and utilisable CP at the duodenum (uCP). Additivity of CP fractions (determined using the Cornell Net Carbohydrate and Protein System (CNCPS)) was dependent on the fraction and compound feed type; however, the effective degradation calculated from CP fractions (EDCNCPS) showed additivity. Additivity was not given for intestinal digestibility of rumen-undegraded protein (IDRUP) for five out of eight compound feeds. Precise calculation of metabolisable energy (ME) of compound feeds from ME of single feeds was possible when using the same ME equations for all single and compound feeds. Compound feeds are often provided in pellet form; therefore, our second objective was to evaluate the effects of pelleting on ruminal fermentation characteristics and feeding values of compound feeds. Pelleting affected GP at 24 h (GP24; up to 2.4 ml/200 mg DM), dOM (up to 2.3 percentage point (pp)) and ME (up to 0.3 MJ/kg DM), but these differences were overall small. More considerable effects of pelleting were observed for uCP, which was increased in all compound feeds except the two with the highest CP concentrations. The IDRUP was lower in most compound feeds following pelleting (up to 15 pp). Pelleting also affected CP fractions in a non-systematic way. Overall, the effects of pelleting were not considerable, which could be because pelleting conditions were mild. Our third objective was to compare in situ ruminal CP degradation (EDIN_SITU) of compound feeds with ED using two prediction methods based on CP fractions. EDIN_SITU reference data were obtained from a companion study using the same feeds. Prediction accuracy of EDIN_SITU and EDCNCPS was variable and depended on the compound feed and prediction method. However, future studies are needed as to date not enough data are published to draw overall conclusions for the prediction of EDIN_SITU from CP fractions.
Although cattle can synthesize vitamin C (VC) endogenously, stress may increase VC requirements above the biosynthetic threshold and warrant supplementation. This study investigated the effects of a VC injection delivered before or after a long-distance transit event on blood parameters and feedlot performance of beef steers. Fifty-two days prior to trial initiation, 90 newly weaned, Angus-based steers from a single source were transported to Ames, IA, USA. On day 0, 72 steers (356 ± 17 kg) were blocked by BW and randomly assigned to intramuscular injection treatments (24 steers/treatment): saline injection pre- and post-transit (CON), VC (Vet One, Boise, ID, USA; 5 g sodium ascorbate/steer) injection pre-transit and saline injection post-transit (PRE) or saline injection pre-transit and VC injection post-transit (POST). Following pre-transit treatment injections, steers were transported on a commercial livestock trailer for approximately 18 h (1675 km). Post-transit (day 1), steers were sorted into pens with one GrowSafe bunk/pen (4 pens/treatment; 6 steers/pen). Steers were weighed on day 0, 1, 7, 30, 31, 56 and 57. Blood was collected from 3 steers/pen on day 0, 1, 2 and 7; liver biopsies were performed on the same 3 steers/pen on day 2. Data were analyzed as a randomized complete block design (experimental unit = steer; fixed effects = treatment and block) and blood parameters were analyzed as repeated measures. A pre-transit VC injection improved steer average daily gain from day 7 to 31 (P = 0.05) and overall (day 1 to 57; P = 0.02), resulting in greater BW for PRE-steers on day 30/31 (P = 0.03) and a tendency for greater final BW (day 56/57; P = 0.07). Steers that received VC pre- or post-transit had greater DM intake from day 31 to 57 (P = 0.01) and overall (P = 0.02) v. CON-steers. Plasma ascorbate concentrations were greatest for PRE-steers on day 1 and POST-steers on day 2 (treatment × day; P < 0.01). No interaction or treatment effects were observed for other blood parameters (P ≥ 0.21). Plasma ferric-reducing antioxidant potential and malondialdehyde concentrations decreased post-transit (day; P < 0.01), while serum non-esterified fatty acids and haptoglobin concentrations increased post-transit (day; P < 0.01). In general, blood parameters returned to pre-transit values by day 7. Pre-transit administration of injectable VC to beef steers mitigated the decline in plasma ascorbate concentrations and resulted in superior feedlot performance compared to post-transit administration.
Breeding values for feed intake and feed efficiency in beef cattle are generally derived indoors on high-concentrate (HC) diets. Within temperate regions of north-western Europe, however, the majority of a growing beef animal’s lifetime dietary intake comes from grazed grass and grass silage. Using 97 growing beef cattle, the objective of the current study was to assess the repeatability of both feed intake and feed efficiency across 3 successive dietary test periods comprising grass silage plus concentrates (S+C), grazed grass (GRZ) and a HC diet. Individual DM intake (DMI), DMI/kg BW and feed efficiency-related parameters, residual feed intake (RFI) and gain to feed ratio (G : F) were assessed. There was a significant correlation for DMI between the S+C and GRZ periods (r = 0.32; P < 0.01) as well as between the S+C and HC periods (r = 0.41; P < 0.001), whereas there was no association for DMI between the GRZ and HC periods. There was a significant correlation for DMI/kg BW between the S+C and GRZ periods (r = 0.33; P < 0.01) and between the S+C and HC periods (r = 0.40; P < 0.001), but there was no association for the trait between the GRZ and HC periods. There was a significant correlation for RFI between the S+C and GRZ periods (r = 0.25; P < 0.05) as well as between S+C and HC periods (r = 0.25; P < 0.05), whereas there was no association for RFI between the GRZ and HC periods. Gain to feed ratio was not correlated between any of the test periods. A secondary aspect of the study demonstrated that traits recorded in the GRZ period relating to grazing bite rate, the number of daily grazing bouts and ruminating bouts were associated with DMI (r = 0.28 to 0.42; P < 0.05 - 0.001), DMI/kg BW (r = 0.36 to 0.45; P < 0.01 - 0.001) and RFI (r = 0.31 to 0.42; P < 0.05 - 0.001). Additionally, the number of ruminating boli produced per day and per ruminating bout were associated with G : F (r = 0.28 and 0.26, respectively; P < 0.05). Results from this study demonstrate that evaluating animals for both feed intake and feed efficiency indoors on HC diets may not reflect their phenotypic performance when consuming conserved forage-based diets indoors or when grazing pasture.
Less than 2% of mammalian genomes code for proteins, but ‘the majority of its bases can be found in primary transcripts’ – a phenomenon termed the pervasive transcription, which was first reported in 2007. Even though most of the transcripts do not code for proteins, they play a variety of biological functions, with regulation of gene expression appearing as the most common one. Those transcripts are divided into two groups based on their length: small non-coding RNAs, which are maximally 200 bp long, and long non-coding RNAs (lncRNAs), which are longer than 200 nucleotides. The advances in next-generation sequencing methods provided a new possibility of investigating the full set of RNA molecules in the cell. In this review, we summarized the current state of knowledge on lncRNAs in three major livestock species – Sus scrofa, Bos taurus and Gallus gallus, based on the literature and the content of biological databases. In the NONCODE database, the largest number of identified lncRNA transcripts is available for pigs, but cattle have the largest number of lncRNA genes. Poultry is represented by less than a half of records. Genomic annotation of lncRNAs showed that the majority of them are assigned to introns (pig, poultry) or intergenic (cattle). The comparison with well-annotated human and mouse genomes indicates that such annotation is a result of lack of proper lncRNA annotation data. Since lncRNAs play an important role in genomic studies, their characterization in farm animals’ genomes is critical in bridging the gap between genotype and phenotype.
Reducing dietary CP content is an effective approach to reduce animal nitrogen excretion and save protein feed resources. However, it is not clear how reducing dietary CP content affects the nutrient digestion and absorption in the gut of ruminants, therefore it is difficult to accurately determine how much reduction in dietary CP content is appropriate. This study was conducted to investigate the effects of reduced dietary CP content on N balance, intestinal nutrient digestion and absorption, and rumen microbiota in growing goats. To determine N balance, 18 growing wether goats (25.0 ± 0.5 kg) were randomly assigned to one of three diets: 13.0% (control), 11.5% and 10.0% CP. Another 18 growing wether goats (25.0 ± 0.5 kg) were surgically fitted with ruminal, proximate duodenal, and terminal ileal fistulae and were randomly assigned to one of the three diets to investigate intestinal amino acid (AA) absorption and rumen microbiota. The results showed that fecal and urinary N excretion of goats fed diets containing 11.5% and 10.0% CP were lower than those of goats fed the control diet (P < 0.05). When compared with goats fed the control diet, N retention was decreased and apparent N digestibility in the entire gastrointestinal tract was increased in goats fed the 10% CP diet (P < 0.05). When compared with goats fed the control diet, the duodenal flow of lysine, tryptophan and phenylalanine was decreased in goats fed the 11.5% CP diet (P < 0.05) and that of lysine, methionine, tryptophan, phenylalanine, leucine, glutamic acid, tyrosine, essential AAs (EAAs) and total AAs (TAAs) was decreased in goats fed the 10.0% CP diet (P < 0.05). When compared with goats fed the control diet, the apparent absorption of TAAs in the small intestine was increased in goats fed the 11.5% CP diet (P < 0.05) and that of isoleucine, serine, cysteine, EAAs, non-essential AAs, and TAAs in the small intestine was increased in goats fed the 10.0% CP diet (P < 0.05). When compared with goats fed the control diet, the relative richness of Bacteroidetes and Fibrobacteres was increased and that of Proteobacteria and Synergistetes was decreased in the rumen of goats fed a diet with 10.0% CP. In conclusion, reducing dietary CP content reduced N excretion and increased nutrient utilization by improving rumen fermentation, enhancing nutrient digestion and absorption, and altering rumen microbiota in growing goats.