To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recombination provides a means for creating genetic variety. Exchange of information within gene pools expands their diversity and enhances the choices available for natural selection to act on. Recombination can be broadly divided into two classes: the highly pervasive “homologous” recombination and the more specialized “site-specific recombination.”
HOMOLOGOUS RECOMBINATION
Before we discuss site-specific recombination, a brief overview of general (or homologous) recombination is useful for an appreciation of the distinctions between the two systems. Homologous recombination is a nearly universal mechanism employed by living organisms to reshuffle their genetic information. Within a cell, recombination can occur between two homologous chromosomes, between two sister chromatids formed by DNA replication, and between extrachromosomal elements such as plasmids or viral genomes. In eukaryotes, the rate of recombination during mitosis is relatively low and is markedly increased during meiosis. In fact, genetic exchange between homologs and chiasma formation appear to be a prerequisite for the proper reductional segregation of chromosomes and the generation of haploid gametes. The consequences of the resulting genetic configuration and the corresponding fitness contribution to an individual will be manifested directly, and almost immediately, in a haploid organism. For a diploid organism, the expression of the novel genetic makeup must await the fusion between the male and female gametes to produce a zygote. Recombination is therefore one of the forces that drive Darwinian evolution.
It is a curious fact that two unrelated families of enzymes have evolved that promote conservative site-specific recombination. Elsewhere in this volume (see Chapter 2), a large family of “tyrosine recombinases” is described, of which phage lambda integrase is the most famous and senior member. The subject of this chapter is a second large family, the “serine recombinases.” The names come from the conserved residue of the recombinase that provides the nucleophile to attack and break the DNA phosphodiester backbone (see “Tn3 and γδ resolvases: cointegrate resolution” section). Although the serine and tyrosine recombinases are unrelated in sequence, structure, or mechanism, there is no obvious distinction between their biological functions. Why two very different types of site-specific recombinases have survived eons of natural selection, yet continue to play similar roles, remains a mystery. Serine recombinases are widespread in the Eubacteria and Archea, but not in Eukarya, where the few examples found so far may be of recent bacterial origin.
A serine recombinase can be identified by similarity of parts or all of its primary amino acid sequence to that of one of the archetypal members of the family [e.g. Tn3 resolvase (Fig. 3.7)]. Several hundreds of such proteins can now be predicted from available DNA sequences (reviewed by Smith and Thorpe, 2002). The relations of the members of the family are discussed later in this chapter.
Introns and retroelements are hallmarks of eukaryotic genomes, but they are also found in bacteria. Here the different types of bacterial introns and retroelements are summarized, including group I introns, group II introns, archaeal bulge-helix-bulge (BHB) introns, intervening sequences (IVSs) in rRNAs, retrons, and diversity generating elements (DGRs). Except for the retroelements, these elements are evolutionarily unrelated, but nevertheless share intriguing properties. The elements all appear mobile within and among bacterial genomes, and in general, do not have clear phenotypic consequence to their host cells. It is possible that introns and retroelements spread from bacteria to eukaryotes as selfish DNAs or were present in the common ancestor of bacteria and eukaryotes.
INTRODUCTION
Introns and retroelements are typically considered components of eukaryotic genomes, because they were discovered in eukaryotes and are particularly abundant in higher eukaryotes. The human genome, for example, contains roughly 200,000 introns and nearly 3 million retroelements (including SINEs), dwarfing the number of functional genes, which are estimated at 30,000 (International Human Genome Sequencing Consortium, 2001). Together, introns and retroelements make up nearly half of the human genome and constitute the major types of “junk DNAs.”
In bacteria, the major types of “junk DNAs” are transposons and prophages, which can constitute anywhere from <1% to 7% of a genome (e.g., Glaser et al., 2001). Introns and retroelements are comparatively rare in bacteria, but they have generated substantial interest because of their parallels to eukaryotic introns and retroelements.
By
Michael J. Gubbins, Department of Biological Sciences, University of Alberta,
William R. Will, Department of Biological Sciences, University of Alberta,
Laura S. Frost, Department of Biological Sciences, University of Alberta
The F factor is often associated with Escherichia coli and appears to have been adapted by the bacterial host to act as an agent of genetic exchange and evolution. F encodes a type IV secretion system (T4SS) that enables bacterial conjugation, the transfer of DNA from a donor F+ to a recipient F− cell. The delivery of DNA containing either host or foreign genes has important consequences for the bacterium, allowing it to enlarge or modify its genetic content and rapidly adapt to an environmental niche. Unlike other plasmids, the conjugative functions of F and F-like plasmids appear to be controlled by a complex regulatory network that involves many host proteins resulting in a symbiotic relation between F and its host. This chapter outlines the predicted and known functions for all the genes on the F plasmid and its close relatives, and describes our current knowledge about the regulation of F conjugation.
BRIEF HISTORY OF THE F PLASMID
The discovery of horizontal gene transfer between bacteria can be attributed to the work of Lederberg and Tatum (1946), who observed that different strains of E. coli K-12 could be genetically and phenotypically altered when mixed together. A series of experiments led to the conclusion that direct contact between bacteria was required in order for genetic material to be transferred between the cells (Davis, 1950). This transfer was found to occur in one direction, from donor to recipient cells, by a mechanism contained within the donor cells (Hayes, 1952).
Inbreeding depression threatens the survival of small populations of both captive and wild outbreeding species. In order to fully understand this threat, it is necessary to investigate what role purging plays in reducing inbreeding depression. Ballou (1997) undertook such an investigation on 25 mammalian populations, using an ancestral inbreeding regression model to detect purging. He concluded that there was a small but highly significant trend of purging on neonatal survival across the populations. We tested the performance of the regression model that Ballou used to detect purging on independently simulated data. We found that the model has low statistical power when inbreeding depression is caused by the build-up of mildly deleterious alleles. It is therefore possible that Ballou's study may have underestimated the effects of ancestral inbreeding on the purging of inbreeding depression in captive populations if their inbreeding depression was caused mainly by mildly deleterious mutations. We also developed an alternative regression model to Ballou's, which showed an improvement in the detection of purging of mildly deleterious alleles but performed less well if deleterious alleles were of a large effect.
We have investigated at the molecular level four cases in which D. melanogaster middle repetitive DNA probes consistently hybridized to a particular band on chromosomes sampled from a D. melanogaster natural population. Two corresponded to true fixations of a roo and a Stalker element, and the others were artefacts of the in situ hybridization technique caused by the presence of genomic DNA flanking the transposable elements (TEs) in the probes. The two fixed elements are located in the β-heterochromatin (20A and 80B, respectively) and are embedded in large clusters of other elements, many of which may also be fixed. We also found evidence that this accumulation is an ongoing process. These results support the hypothesis that TEs accumulate in the non-recombining part of the genome. Their implications for the effects of TEs on determining the chromatin structure of the host genomes are discussed in the light of recent evidence for the role of TE-derived small interfering-RNAs as cis-acting determinants of heterochromatin formation.
We regret that in the article by Akira Ishikawa et al. in Genetical Research (2005) Vol. 85, No. 2, pp. 127–137, Fig. 1 on page 131 should have been reproduced in colour, not in black and white. Please find the correct version below.
Data from an F2 cross between breeds of livestock are typically analysed by least squares line-cross or half-sib models to detect quantitative trait loci (QTL) that differ between or segregate within breeds. These models can also be combined to increase power to detect QTL, while maintaining the computational efficiency of least squares. Tests between models allow QTL to be characterized into those that are fixed (LC QTL), or segregating at similar (HS QTL) or different (CB QTL) frequencies in parental breeds. To evaluate power of the combined model, data wih various differences in QTL allele frequencies (FD) between parental breeds were simulated. Use of all models increased power to detect QTL. The line-cross model was the most powerful model to detect QTL for FD>0·6. The combined and half-sib models had similar power for FD<0·4. The proportion of detected QTL declared as LC QTL decreased with FD. The opposite was observed for HS QTL. The proportion of CB QTL decreased as FD deviated from 0·5. Accuracy of map position tended to be greatest for CB QTL. Models were applied to a cross of Berkshire and Yorkshire pig breeds and revealed 160 (40) QTL at the 5% chromosome (genome)-wise level for the 39 growth, carcass composition and quality traits, of which 72, 54, and 34 were declared as LC, HS and CB QTL. Fourteen CB QTL were detected only by the combined model. Thus, the combined model can increase power to detect QTL and mapping accuracy and enable characterization of QTL that segregate within breeds.
Wolbachia, a group of endosymbiotic bacteria in arthropods, alter the reproduction of their hosts in various ways. A Wolbachia strain (wSca) naturally infecting the adzuki bean borer moth Ostrinia scapulalis induces male killing, while another strain (wKue) infecting the Mediterranean flour moth Ephestia kuehniella induces cytoplasmic incompatibility (CI) in the resident host. Transinfection of Wolbachia can be a powerful tool to elucidate the relative importance of Wolbachia and the host in determining the type of reproductive alterations. Recently, male killing was shown to occur in E. kuehniella transinfected with wSca. In the present study, we transferred wKue to O. scapulalis by embryonic microinjection. In the O. scapulalis transinfected with wKue, CI, but not male killing occurred. Thus, in addition to wSca, wKue was shown to induce the same type of alteration in a foreign host as in its natural host. These results demonstrate the crucial role of the Wolbachia genotype in determining the type of reproductive alteration. However, the present study also revealed the involvement of host factors. First, the degree of incompatibility induced by wKue in O. scapulalis was stronger than that in E. kuehniella, indicating that host factors can affect the level of CI. Second, the vertical transmission rate of wKue in O. scapulalis was generally low, suggesting that the host affects the dynamics of Wolbachia transmission.
Levels of human obesity have increased over the past 20 years worldwide, primarily due to changes in diet and activity levels. Although environmental changes are clearly responsible for the increasing prevalence of obesity, individuals may show genetic variation in their response to an obesogenic environment. Here, we measure genetic variation in response to a high-fat diet in a mouse model, an F16 Advanced Intercross Line derived from the cross of SM/J and LG/J inbred mouse strains. The experimental population was separated by sex and fed either a high-fat (42% of energy from fat) or low-fat (15% of energy from fat) diet. A number of phenotypic traits related to obesity and diabetes such as growth rate, glucose tolerance traits, organ weights and fat pad weights were collected and analysed in addition to serum levels of insulin, free fatty acids, cholesterol and triglycerides. Most traits are different between the sexes and between dietary treatments and for a few traits, including adult growth, fat pad weights, insulin and glucose tolerance, the dietary effect is stronger in one sex than the other. We find that fat pad weights, liver weight, serum insulin levels and adult growth rates are all phenotypically and genetically correlated with one another in both dietary treatments. Critically, these traits have relatively low genetic correlations across environments (average r=0·38). Dietary responses are also genetically correlated across these traits. We found substantial genetic variation in dietary response and low cross environment genetic correlations for traits aligned with adiposity. Therefore, genetic effects for these traits are different depending on the environment an animal is exposed to.
Behaviour depends (a) on genes that specify the neural and non-neural elements involved in the perception of and responses to sensory stimuli and (b) on experience that can modulate the fine development of these elements. We exposed transgenic and control Drosophila melanogaster males, and their hybrids, to male siblings during adult development and measured the contribution of genes and of experience to their courtship behaviour. The transgene CheB42a specifically targets male gustatory sensillae and alters the perception of male inhibitory pheromones which leads to frequent male–male interactions. The age at which social experience occurred and the genotype of tester males induced a variable effect on the intensity of male homo- and heterosexual courtship. The strong interaction between the effects of genes and of social experience reveals the plasticity of the apparently stereotyped elements involved in male courtship behaviour. Finally, a high intensity of homosexual courtship was found only in males that simultaneously carried a mutation in their white gene and the CheB42a transgene.
We sequenced locus Mel08, with complex short repetitive motifs, in 24 carnivore species belonging to five different families in order to explore mutational changes in the region in the context of locus and species evolution. This non-coding locus includes up to four different parts or repetitive motifs showing size variability. The variability consists of repeat additions and deletions; substitutions, insertions and/or deletions creating interruptions in the repeat; and substitutions, insertions and deletions in the flanking regions. The locus has different repeat expansions in different carnivore subfamilies. We hypothesize that the complexity of this locus is due to a high mutation rate at an ancestral DNA sequence and, thus, prompts the emergence of repeats at mutational hotspots. High levels of homoplasy were evident, with nine electromorphs representing 28 haplotypes never shared across species. The variability in flanking regions was informative for phylogenetic inference and their evolutionary content. Tree topologies were congruent with relevant hypotheses on current conflicts in carnivore phylogenies, such as: (i) the monophyly of Lutrinae, (ii) the paraphyly of Mustelinae, (iii) the basal position of the Eurasian badger, Meles meles, in the Mustelidae, (iv) the classification of skunks as a separate family, Mephitidae, and (v) the placement of the red panda, Ailurus fulgens, as a monotypic family, Ailuridae, at a basal position in the Musteloidea.
Although transposable elements (TEs) have been found in all organisms in which they have been looked for, the ways in which they invade genomes and populations are still a matter of debate. By extending the classical models of population genetics, several approaches have been developed to account for the dynamics of TEs, especially in Drosophila melanogaster. While the formalism of these models is based on simplifications, they enable us to understand better how TEs invade genomes, as a result of multiple evolutionary forces including duplication, deletion, self-regulation, natural selection and genetic drift. The aim of this paper is to review the assumptions and the predictions of these different models by highlighting the importance of the specific characteristics of both the TEs and the hosts, and the host/TE relationships. Then, perspectives in this domain will be discussed.
Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) are the most important vectors of the dengue and yellow-fever viruses. Both took advantage of trade developments to spread throughout the tropics from their native area: A. aegypti originated from Africa and A. albopictus from South-East Asia. We investigated the relationships between A. aegypti and A. albopictus mosquitoes based on three mitochondrial-DNA genes (cytochrome b, cytochrome oxidase I and NADH dehydrogenase subunit 5). Little genetic variation was observed for A. albopictus, probably owing to the recent spreading of the species via human activities. For A. aegypti, most populations from South America were found to be genetically similar to populations from South-East Asia (Thailand and Vietnam), except for one sample from Boa Vista (northern Amazonia), which was more closely related to samples from Africa (Guinea and Ivory Coast). This suggests that African populations of A. aegypti introduced during the slave trade have persisted in Boa Vista, resisting eradication campaigns.
The typical life cycle of aphids involves several parthenogenetic generations followed by a single sexual one in autumn, i.e. cyclical parthenogenesis. Sexual females are genetically identical to their parthenogenetic mothers and carry two sex chromosomes (XX). Male production involves the elimination of one sex chromosome (to produce X0) that could give rise to genetic conflicts between X-chromosomes. In addition, deleterious recessive mutations could accumulate on sex chromosomes during the parthenogenetic phase and affect males differentially depending on the X-chromosome they inherit. Genetic conflicts and deleterious mutations thus may induce transmission bias that could be exaggerated in males. Here, the transmission of X-chromosomes has been studied in the laboratory in two cyclically parthenogenetic lineages of the bird cherry-oat aphid Rhopalosiphum padi. X-chromosome transmission was followed, using X-linked microsatellite loci, at male production in the two lineages and in their hybrids deriving from reciprocal crosses. Genetic analyses revealed non-Mendelian inheritance of X-chromosomes in both parental and hybrid lineages at different steps of male function. Putative mechanisms and evolutionary consequences of non-Mendelian transmission of X-chromosomes to males are discussed.
We performed a quantitative trait locus (QTL) analysis of eight body weights recorded weekly from 3 weeks to 10 weeks after birth and two weight gains recorded between 3 weeks and 6 weeks, and between 6 weeks and 10 weeks in an intersubspecific backcross population of wild Mus musculus castaneus mice captured in the Philippines and the common inbred strain C57BL/6J (M. musculus domesticus), to elucidate the complex genetic architecture of body weight and growth. Interval mapping identified 17 significant QTLs with main effects on 11 chromosomes. In particular, the main effect of the most potent QTL on proximal chromosome 2 increased linearly with age, whereas other QTLs exerted effects on either the early or late growth period. Surprisingly, although wild mice displayed 60% of the body size of their C57BL/6J counterparts, the wild-derived allele enhanced growth at two QTLs. Interestingly, five of the 17 main-effect QTLs identified had significant epistatic interaction effects. Five new epistatic QTLs with no main effects were identified on different chromosomes or regions. For one pair of epistatic QTLs, mice that were heterozygous for the wild-derived allele at one QTL and homozygous for that allele at another QTL exhibited the most rapid growth in all four possible genotypic combinations. Out of the identified QTLs, several showed significant sex-specific effects.
Divergence between species in regulatory pathways may contribute to hybrid incompatibilities such as sterility. Consistent with this idea, genes involved in male fertility often evolve faster than most other genes both in amino acid sequence and in expression. Previously, we identified a panel of male-specific genes underexpressed in sterile male hybrids of Drosophila simulans and D. mauritiana relative to pure species, and we showed that this underexpression is associated with infertility. In a preliminary effort to assess the generalities in the patterns of evolution of these genes, I examined patterns of mRNA expression in three of these genes in sterile F1 hybrid males of D. pseudoobscura and D. persimilis. F1 hybrid males bearing D. persimilis X chromosomes underexpressed all these genes relative to the parental species, while hybrids bearing D. pseudoobscura X chromosomes underexpressed two of these three genes. Interestingly, the third gene, CG5762, has undergone extensive amino acid evolution within the D. pseudoobscura species group, possibly driven by positive natural selection. We conclude that some of the same genes exhibit disruptions in expression within each of the two species groups, which could suggest commonalities in the regulatory architecture of sterility in these groups. Alternative explanations are also considered.
Quantitative trait loci (QTL) are usually searched for using classical interval mapping methods which assume that the trait of interest follows a normal distribution. However, these methods cannot take into account features of most survival data such as a non-normal distribution and the presence of censored data. We propose two new QTL detection approaches which allow the consideration of censored data. One interval mapping method uses a Weibull model (W), which is popular in parametrical modelling of survival traits, and the other uses a Cox model (C), which avoids making any assumption on the trait distribution. Data were simulated following the structure of a published experiment. Using simulated data, we compare W, C and a classical interval mapping method using a Gaussian model on uncensored data (G) or on all data (G′=censored data analysed as though records were uncensored). An adequate mathematical transformation was used for all parametric methods (G, G′ and W). When data were not censored, the four methods gave similar results. However, when some data were censored, the power of QTL detection and accuracy of QTL location and of estimation of QTL effects for G decreased considerably with censoring, particularly when censoring was at a fixed date. This decrease with censoring was observed also with G′, but it was less severe. Censoring had a negligible effect on results obtained with the W and C methods.