To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Marker-assisted introgression or backcrossing is a widely used method to improve commercial breeding lines or study the effects of genes in a homogeneous genetic background. In this context, the recovery of the recipient parent genome is a major objective of backcrossing. Selection on markers has been shown to be very useful to accelerate the rate of recovery of the recipient parent genome in backcrossing. In this study we show how much information markers give on the true genetic composition of individuals by deriving the variance and estimating the distribution of the genetic composition of individuals sharing a known genotype at markers. These calculations enable predictions of the number of individuals carrying an ideal genotype at markers that must be produced to fulfil background selection objectives.
The genome of bread wheat is hexaploid and contains 1·6×1010 bp of DNA, of which more than 80% is repetitive sequences. Its size and complexity represent a challenge for the isolation of agronomically important genes, for which we frequently know only their position on the genetic map. Recently, new genomic resources and databases from genome projects have simplified the molecular analysis of the wheat genome. The first genes to be isolated from wheat by map-based cloning include three resistance genes against the fungal diseases powdery mildew and leaf rust. In this review, we will describe the approaches and resources that have contributed to this progress, and discuss genomic strategies that will simplify positional cloning in wheat in the near future.
A mutation endowing herbicide resistance is often found to induce a parallel morphological or fitness penalty. To test whether such ‘cost’ of resistance to herbicides is expressed through lower resource acquisition, changes in resource allocation, or both, is of ecological significance. Here, we analysed 12 morphological traits in 900 plants covering three herbicide resistance mutations at genes AUX1, AXR1 and AXR2 in the model species Arabidopsis thaliana. Comparing these 2,4-D herbicide-resistant homozygous (RR) and heterozygous (RS) plants to homozygous susceptible (SS) plants, this analysis estimates the dominance level of the resistance allele on morphology. We also demonstrated that the herbicide resistance cost was primarily expressed as a change in resource acquisition (62·1–94% of the analysed traits). Although AUX1, AXR1 and AXR2 genes act in the same metabolic pathway of auxin response, each resistance factor was found to have its own unique signature in the way the cost was expressed. Furthermore, no link was observed between the absolute fitness penalty and the respective modifications of resource acquisition and/or resource allocation in the resistant plants. These results and their implications for herbicide resistance spread and establishment are discussed.
There has recently been increased interest in the use of Markov Chain Monte Carlo (MCMC)-based Bayesian methods for estimating genetic maps. The advantage of these methods is that they can deal accurately with missing data and genotyping errors. Here we present an extension of the previous methods that makes the Bayesian method applicable to large data sets. We present an extensive simulation study examining the statistical properties of the method and comparing it with the likelihood method implemented in Mapmaker. We show that the Maximum A Posteriori (MAP) estimator of the genetic distances, corresponding to the maximum likelihood estimator, performs better than estimators based on the posterior expectation. We also show that while the performance is similar between Mapmaker and the MCMC-based method in the absence of genotyping errors, the MCMC-based method has a distinct advantage in the presence of genotyping errors. A similar advantage of the Bayesian method was not observed for missing data. We also re-analyse a recently published set of data from the eggplant and show that the use of the MCMC-based method leads to smaller estimates of genetic distances.
Optimizing quantitative trait locus (QTL) mapping experiments requires a generalized measure of marker informativeness because variable information is obtained from different marker systems, marker distribution and pedigree types. Such a measure can be derived from the concept of Shannon entropy, a central concept in information theory. Here we introduce entropy-based founder informativeness(EFI), a new measure of information content generalized across pedigrees, maps, marker systems and mating configurations. We derived equations for inbred- and outbred-derived mapping populations. Mathematical properties of EFI include enhanced sensitivity to mapping population type and extension to any number of founders. To illustrate the use of EFI, we compared experimental designs for QTL mapping for three examples: (i) different marker systems for an F2 pedigree, (ii) different marker densities and sampling sizes for a BC1 pedigree and (iii) a comparison of haplotypic versus zygotic analyses of an outbred pedigree. As an a priori generalized measure of information content, EFI does not require phenotypic data for optimizing experimental designs for QTL mapping.
The molecular evolution of cultivated rice Oryza sativa L. has long been a subject of rice evolutionists. To investigate genetic diversity within and differentiation between the indica and japonica subspecies, 22 accessions of indica and 35 of japonica rice were examined by five microsatellite loci from each chromosome totalling 60 loci. Mean gene diversity value in the indica rice (H=0·678) was 1·18 times larger than in the japonica rice (H=0·574). Taking the sampling effect into consideration, average allele number in the indica rice was 1·40 times higher than that in the japonica rice (14·6 vs 10·4 per variety). Chromosome-based comparisons revealed that nine chromosomes (1, 2, 3, 4, 5, 8, 9, 10 and 11) harboured higher levels of genetic diversity within the indica rice than the japonica rice. An overall estimate of FST was 0·084–0·158, indicating that the differentiation is moderate and 8·4–15·8% of the total genetic variation resided between the indica and japonica groups. Our chromosome-based comparisons further suggested that the extent of the indica–japonica differentiation varied substantially, ranging from 7·62% in chromosome 3 to 28·72% in chromosome 1. Cluster analyses found that most varieties formed merely two clusters for the indica and japonica varieties, in which two japonica varieties and five indica varieties were included in the counterpart clusters, respectively. The 12 chromosome-based trees further showed that 57 rice varieties cannot be clearly clustered together into either the indica or japonica groups, but displayed relatively different clustering patterns. The results suggest that the process of indica–japonica differentiation may have proceeded through an extensive contribution by the alleles of the majority in the rice genome.
In any partially inbred population, ‘junctions’ are the loci that form boundaries between segments of ancestral chromosomes. Here we show that the expected number of junctions per Morgan in such a population is linearly related to the inbreeding coefficient of the population, with a maximum in a completely inbred population corresponding to the prediction given by Stam (1980). We further show that high-density marker maps (fully informative markers with average densities of up to 200 per cM) will fail to detect a significant proportion of the junctions present in highly inbred populations. The number of junctions detected is lower than that which would be expected if junctions were distributed randomly along the chromosome, and we show that junctions are not, in fact randomly spaced. This non-random spacing of junctions significantly increases the number of markers that is required to detect 90% of the junctions present on any chromosome: a marker count of at least 12 times the number of junctions present will be needed to detect this proportion.
Groups of recently diverged species offer invaluable glimpses into the history and genetic basis of speciation and phenotypic evolution. In this report, we combine phylogenetic and population-genetic approaches to reconstruct the evolutionary history of the Drosophila bipectinata species complex. This complex is a group of four closely related, largely sympatric species – D. bipectinata, D. parabipectinata, D. malerkotliana and D. pseudoananassae. Using the sequences of one mitochondrial and six nuclear loci, we show that D. bipectinata and D. parabipectinata are the two most closely related species, and that together with D. malerkotliana they form a monophyletic clade to which D. pseudoananassae is a relatively distant outgroup. Genetic divergence among D. bipectinata, D. parabipectinata and D. malerkotliana is extremely low, and we estimate that these species diverged only 283000–385000 years ago. We also find that mitochondrial DNA shows evidence of recent gene flow across species boundaries. Despite the low genetic divergence, species of the bipectinata complex show an unusually high degree of morphological differentiation. This contrast underscores the importance of understanding the genetic basis of functional differentiation among closely related species.
Resistance to low temperatures can vary markedly among invertebrate species and is directly related to their distribution. Despite the ecological importance of cold resistance this trait has rarely been studied genetically, mainly because low and variable fitness of offspring from cold-stressed mothers makes it difficult to undertake selection experiments and compare cold resistance of parents and offspring. One measure of cold resistance that varies geographically in Drosophila melanogaster and that is amenable to genetic analysis is chill-coma recovery. Three replicate lines of D. melanogaster were selected every second generation, for over 30 generations, for decreased recovery time following exposure to 0 °C. Correlated responses were scored to characterize underlying physiological traits and to investigate interactions with other traits. Lines responded rapidly to the intermittent selection regime with realized heritabilities varying from 33% to 46%. Selected lines showed decreased recovery time after exposure to a broad range of low temperatures and also had a lower mortality following a more severe cold shock, indicating that a general mechanism underlying cold resistance had been selected. The selection response was independent of plastic changes in cold resistance because the selected lines maintained their ability to harden (i.e. a short-term exposure to cool temperature resulted in decreased recovery time in subsequent chill-coma assays). Changes in cold resistance were not associated with changes in resistance to high temperature exposure, and selected lines showed no changes in wing size, development time or viability. However, there was a decrease in longevity in the selected lines due to an earlier onset of ageing. These results indicate that chill-coma recovery can be rapidly altered by selection, as long as selection is undertaken every second generation to avoid carry-over effects, and suggest that lower thermal limits can be shifted towards increased cold resistance independently of upper thermal limits and without tradeoffs in many life-history traits.
Quantitative genetic variation, the main determinant of the ability to evolve, is expected to be lost in small populations, but there are limited data on the effect, and controversy as to whether it is similar to that for near neutral molecular variation. Genetic variation for abdominal and sternopleural bristle numbers and allozyme heterozygosity were estimated in 23 populations of Drosophila melanogaster maintained at effective population sizes of 25, 50, 100, 250 or 500 for 50 generations, as well as in 19 highly inbred populations and the wild outbred base population. Highly significant negative regressions of proportion of initial genetic variation retained on inbreeding due to finite population size were observed for both quantitative characters (b=−0·67±0·14 and −0·58±0·11) and allozyme heterozygosity (b=−0·79±0·10), and the regression coefficients did not differ significantly. Thus, quantitative genetic variation is being lost at a similar rate to molecular genetic variation. However, genetic variation for all traits was lost at rates significantly slower than predicted by neutral theory, most likely due to associative overdominance. Positive, but relatively low correlations were found among the different measures of genetic variation, but their low magnitudes were attributed to large sampling errors, rather than differences in the underlying processes of loss.
The leptin receptor gene (LEPR) is a candidate for traits related to growth and body composition, and is located on SSC6 in a region where fatness and meat composition quantitative trait loci (QTL) have previously been detected in several F2 experimental designs. The aims of this work were: (i) to fine map these QTL on a larger sample of animals and generations (F3 and backcross) of an Iberian×Landrace intercross and (ii) to examine the effects of LEPR alleles on body composition traits. Eleven single nucleotide polymorphisms (SNPs) were detected by sequencing LEPR coding regions in Iberian and Landrace pig samples. Three missense polymorphisms were genotyped by pyrosequencing in 33 F0, 70 F1, 418 F2, 86 F3 and 128 individuals coming from the backcross of four F2 males with 24 Landrace females. Thirteen microsatellites and one SNP were also genotyped. Traits analysed were: backfat thickness at different locations (BFT), intramuscular fat percentage (IMFP), eye muscle area (EMA), loin depth (LOD), weight of shoulder (SHW), weight of ribs (RIBW) and weight of belly bacon (BBW). Different statistical models were applied in order to evaluate the number and effects of QTL on chromosome 6 and the possible causality of the LEPR gene variants with respect to the QTL. The results support the presence of two QTL on SSC6. One, at position 60–100 cM, affects BFT and RIBW. The other and more significant maps in a narrow region (130–132 cM) and affects BFT, IMFP, EMA, LOD, SHW, RIBW and BBW. Results also support the association between LEPR alleles and BFT traits. The possible functional implications of the analysed polymorphisms are considered.
Hitchhiking phenomena and genetic recombination have important consequences for a variety of fields for which birds are model species, yet we know virtually nothing about naturally occurring rates of recombination or the extent of linkage disequilibrium in birds. We took advantage of a previously sequenced cosmid clone from Red-winged Blackbirds (Agelaius phoeniceus) bearing a highly polymorphic Mhc class II gene, Agph-DAB1, to measure the extent of linkage disequilibrium across ~40 kb of genomic DNA and to determine whether non-coding nucleotide diversity was elevated as a result of physical proximity to a target of balancing selection. Application of coalescent theory predicts that the hitchhiking effect is enhanced by the larger effective population size of blackbirds compared with humans, despite the presumably higher rates of recombination in birds. We surveyed sequence polymorphism at three Mhc-linked loci occurring 1·5–40 kb away from Agph-DAB1 and found that nucleotide diversity was indistinguishable from that found at three presumably unlinked, non-coding introns (β-actin intron 2, β-fibrinogen intron 7 and rhodopsin intron 2). Linkage disequilibrium as measured by Lewontin's D' was found only across a few hundred base pairs within any given locus, and was not detectable among any Mhc-linked loci. Estimated rates of the per site recombination rate ρ derived from three different analytical methods suggest that the amounts of recombination in blackbirds are up to two orders of magnitude higher than in humans, a discrepancy that cannot be explained entirely by the higher effective population size of blackbirds relative to humans. In addition, the ratio of the number of estimated recombination events per mutation frequently exceeds 1, as in Drosophila, again much higher than estimates in humans. Although the confidence limits of the blackbird estimates themselves span an order of magnitude, these data suggest that in blackbirds the hitchhiking effect for this region is negligible and may imply that the per site per individual recombination rate is high, resembling those of Drosophila more than those of humans.
Population genetic analyses traditionally focus on the frequencies of alleles or genotypes in ‘populations’ that are delimited a priori. However, there are potential drawbacks of amalgamating genetic data into such composite attributes of assemblages of specimens: genetic information on individual specimens is lost or submerged as an inherent part of the analysis. A potential also exists for circular reasoning when a population's initial identification and subsequent genetic characterization are coupled. In principle, these problems are circumvented by some newer methods of population identification and individual assignment based on statistical clustering of specimen genotypes. Here we evaluate a recent method in this genre – Bayesian clustering – using four genotypic data sets involving different types of molecular markers in non-model organisms from nature. As expected, measures of population genetic structure (FST and ΦST) tended to be significantly greater in Bayesian a posteriori data treatments than in analyses where populations were delimited a priori. In the four biological contexts examined, which involved both geographic population structures and hybrid zones, Bayesian clustering was able to recover differentiated populations, and Bayesian assignments were able to identify likely population sources of specific individuals.
As an alternative to multiple-interval mapping a two-step moment method was recently proposed to map linked multiple quantitative trait loci (QTLs). The advantage of this moment method was supposed to be its simplicity and computational efficiency, especially in detecting closely linked QTLs within a marker bracket, but also in mapping QTLs in different marker intervals. Using simulations it is shown that the two-step moment method may give poor results compared with multiple-interval mapping, irrespective of whether the QTLs are in the same or in different marker intervals, especially if linked QTLs are in repulsion. The criteria of comparison are number of identified QTLs, likelihood ratio test statistics, means and empirical standard errors of the QTL position and QTL effects estimates, and the accuracy of the residual variance estimates. Further, the joint conditional probabilities of QTL genotypes for two putative QTLs within a marker interval were derived and compared with the unmodified approach ignoring the non-independence of the conditional probabilities.
t haplotypes are naturally occurring, variant forms of the t complex on mouse chromosome 17, characterized by the presence of four inversions with respect to wild-type. They harbour mutations causing male sterility, male transmission ratio distortion (TRD) and embryonic lethality. Mice carrying t haplotypes have been found throughout the world, and genetic studies of the lethal mutations have identified at least 16 complementation groups. The embryonic lethal phenotypes of many t haplotypes have been characterized in detail, and are thought to be the consequence of homozygosity for single gene mutations. However, the existence of additional mutations in genes that function at later stages of development would be obscured. Here we investigated the possibility of multiple mutations in t haplotypes by screening the tw73 haplotype for the presence of novel mutations. Since genetic analysis of t haplotype mutations is hindered by recombination suppression due to the inversions, deletion complexes covering the proximal two-thirds of the t complex were used to uncover the presence of any new lethal alleles. This analysis revealed a novel mutation between D17Jcs41 and D17Mit100, causing mice carrying both tw73 and selected deletions to die at birth, prior to feeding. The finding of a new, cryptic lethal mutation in t haplotypes is an indication that these recombinationally isolated chromosomes, which already contain at least one lethal mutation that prevents homozygosity, may serve as sinks for the accumulation of additional recessive mutations.