To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Viral infections of the central nervous system or neurotropic viruses are often lethal. These diseases range from polio and measles, to rabies, Varicella-zoster, Herpes, West Nile, Japanese encephalitis, and AIDS. Such infections have profound public health consequences, and the understanding of these diseases involves understanding the interaction between the nervous system and the immune system. This book shows each individual virus, discussing the diseases they cause and the mechanisms by which they cause and spread those diseases. Detection, treatment and prevention are also discussed. Included is coverage of novel and beneficial uses of neurotropic viruses for gene therapy and tumor lysis. Neurotropic Viral Infection has been written in a style suitable for a wide professional audience, and will appeal to anyone from graduate students and postdocs to clinicians and public health professionals.
This advanced text, first published in 2006, takes a developmental approach to the presentation of our understanding of how vertebrates construct a retina. Written by experts in the field, each of the seventeen chapters covers a specific step in the process, focusing on the underlying molecular, cellular, and physiological mechanisms. There is also a special section on emerging technologies, including genomics, zebrafish genetics, and stem cell biology that are starting to yield important insights into retinal development. Primarily aimed at professionals, both biologists and clinicians working with the retina, this book provides a concise view of vertebrate retinal development. Since the retina is 'an approachable part of the brain', this book will also be attractive to all neuroscientists interested in development, as processes required to build this exquisitely organized system are ultimately relevant to all other parts of the central nervous system.
The correct functioning of the mammalian brain depends on the integrated activity of myriad neuronal and non-neuronal cells. Discrete areas serve discrete functions, and dispersed or distributed communities of cells serve others. Throughout, these networks of activity are under the control of neuromodulatory systems. One goal of current neuroscientific research is to elucidate the precise methods by which these systems operate, especially during normal conscious behaviours and processes. Mircea Steriade and Denis Paré describe the neuronal properties and networks that exist within and between the cortex and two important sub-cortical structures: the thalamus and amygdala. The authors explore the changes in these properties, covering topics including morphology, electrophysiology, architecture and gating; and comparing regions and systems in both normal and diseased states. Aimed at graduates and postdoctoral researchers in neuroscience.
The barrel cortex contains the somatosensory representation of the whiskers on the face of the rodent and forms an early stage of cortical processing for tactile information. It is an area of great importance for understanding how the cerebral cortex works because the cortical columns that form the basic building blocks of the cerebral cortex can be seen within the barrel cortex. In this advanced graduate and research level text, Kevin Fox explores three main aspects of the barrel cortex: development, sensory processing and plasticity. Initial chapters introduce the topic, describing those animals that have barrels, the functional anatomy of the system and the cellular and synaptic physiology of the cortical microcircuit. The book concludes with a chapter covering the numerous fields where the barrel cortex is used as a model system for solving problems in other areas of research, including stroke, angiogenesis and understanding active touch.
Models and concepts of brain function have always been guided and limited by the available techniques and data. This book brings together a multitude of data from different backgrounds. It addresses questions such as: how do different brain areas interact in the process of channelling information? How do neuronal populations encode the information? How are networks formed and separated or associated with other networks? The authors present data at the single cell level both in vitro and in vivo, at the neuronal population level in vivo comparing field potentials (EEGs) in different brain areas, and also present data from spike recordings from identified neuronal populations during the performance of different tasks. Written for academic researchers and graduate students, the book strives to cover the range of single cell activity analysis to the observation of network activity, and finally to brain area activity and cognitive processes of the brain.
The theories of Rushton and Barlow were very much alive in the 1960s and 1970s and dominated the discussion about visual adaptation. The most convincing defence of Barlow's view was published by Lamb (1981). He admitted that Rushton's theory had received stronger support from the scientific community, but argued that Barlow's theory could more easily be reconciled with known properties of the visual system. He supported his view by presenting three strong arguments against Rushton's theory: (1) intracellular electrical recording from rods and cones under conditions of light adaptation had shown that photoreceptors could become desensitized in a way approximating the Weber law, (2) Rushton's theory implied that the photoreceptor could generate two quite different signals: an incident light intensity signal and a signal of the fraction of bleached photopigment, but no distinguishing mechanism located in the receptor had been found, and (3) the uniform desensitizing effect found by Rushton and Westheimer (1962) and Rushton (1965a) could not be repeated in an experiment performed by Barlow and Andrews (1973). In fact, these authors found a marked difference between sensitivity in the dark and bleached areas.
Lamb (1981) then went on to propose his own specification of Barlow's theory. By analyzing a series of rod dark-adaptation curves of a trichromat previously published by Pugh (1975), he came to the conclusion that the long-term dark-adaptation curve of rods could best be described by three straight lines, each with a different slope.
After a comprehensive review of the anatomical and histological research on the organs of vision from the classical antiquity to his own time, Polyak (1941) concluded that this research had played a relatively insignificant role in forming hypotheses and theories of the function of the visual system. A major reason was that the retina of humans and other primates had never been examined in any detail by analytical histological methods such as those of Golgi and Ehrlich. These methods, although very time consuming, were preferable, since they permitted the staining of only a few nerve cells at a time from the bewildering mass of tissues. Indeed, in successfully treated preparations, the individual neurons could be stained completely, revealing the whole nerve cell with all its extensions and branches extending as far as the finest terminals. Furthermore, he held that a disclosure of the structural details of the retina of primates would make possible interpretations related to the many psychophysical functions already established in humans.
Polyak, therefore, completed a very impressive histological investigation on the retina of macaques and chimpanzees, using the Golgi method. He also occasionally used retinas from humans. His comprehensive and seminal research work (summarized in 1941; second impression,1948) has long been recognized as a classic contribution to our knowledge of the retinal structure and function in primates.
The close relationship between amount of bleached photopigment and sensitivity obtained during long-term dark adaptation strongly indicated that the sensitivity regulation mechanisms were mainly located in the receptors. Both Hecht and Wald had accepted this basic assumption. Rushton (1965a, b), however, strongly opposed this view. Thus, he held that both the signals from bleached photopigments and the signals generated by background light regulated sensitivity centrally to the receptors in what he termed ‘an automatic gain control-summation pool’ (AGC pool). He based his position on two different lines of evidence.
Firstly, he found that a background light so weak that less than 10% of the rods could have caught a single quantum of light raised the threshold three-fold. Apparently, the 10% of the rod receptors that had received a single photon hit had markedly reduced the sensitivity of the 90% that were quite unaffected by the adapting light.
Secondly, Rushton (1965a) could provide strong supporting evidence in favour of his view by both light- and dark-adaptation experiments.
In the light-adaptation experiment, Rushton took advantage of an ingenious technique where he stabilized the light stimuli on the retina. The background was a black-red grating of period 0.5º (presumed to be less than the receptive field of the summation pool) and the test flash, a black-green similar size grating (presumed to activate rod receptors). The test flash superimposed on the background was alternately in- and out-phase.