To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Many engineering problems lead to a system of linear equations a represented matroid - whose rank controls critical qualitative features of the example (Sugihara, 1984; 1985; White & Whiteley, 1983). We will outline a selection of such matroids, drawn from recent work on the rigidity of spatial structures, reconstruction of polyhedral pictures, and related geometric problems.
For these situations, the combinatorial pattern of the example determines a sparse matrix pattern that has both a generic rank, for general ‘independent’ values of the non-zero entries, and a geometric rank, for special values for the coordinates of the points, lines, and planes of the corresponding geometric model. Increasingly, the generic rank of these examples has been studied by matroid theoretic techniques. These geometric models provide nice illustrations and applications of techniques such as matroid union, truncation, and semimodular functions. The basic unsolved problems in these examples highlight certain unsolved problems in matroid theory. Their study should also lead to new results in matroid theory.
Bar Frameworks on the Line - the Graphic Matroid
We begin with the simplest example, which will introduce the vocabulary and the basic pattern. We place a series of distinct points on a line, and specify certain bars - pairs of joints which are to maintain their distance - defining a bar framework on the line. We ask whether the entire framework is ‘rigid’ - i.e. does any motion of the joints along the line, preserving these distances, give all joints the same velocity, acceleration, etc.? Clearly a framework has an underlying graph G = (V, E), with a vertex vi for each joint Pi and an undirected edge {i, j} for each bar {pi, pj}.
The many different axiom systems for finite matroids given in Chapter 2 of White (1986) offer numerous possibilities when one is attempting to generalize the theory to structures over infinite sets. Some axiom systems that are equivalent when one has a finite ground set are no longer so when an infinite ground set is allowed. For this reason, there is no single class of structures that one calls infinite matroids. Rather, various authors with differing motivations have studied a variety of classes of matroid-like structures on infinite sets. Several of these classes differ quite markedly in the properties possessed by their members and, in some cases, the precise relationship between particular classes is still not known.
The purpose of this chapter is to discuss the main lines taken by research into infinite matroids and to indicate the links between several of the more frequently studied classes of infinite matroids.
There have been three main approaches to the study of infinite matroids, each of these being closely related to a particular definition of finite matroids. This chapter will discuss primarily the independent-set approach. Some details of the closure-operator approach will also be needed, but a far more complete treatment of this has been given by Klee (1971) and by Higgs (1969a, b, c). The third approach, via lattices, will not be considered here. This approach is taken by Maeda & Maeda (1970) and they develop it in considerable detail.
This is the third volume of a series that began with Theory of Matroids and continued with Combinatorial Geometries. These three volumes are the culmination of more than a decade of effort on the part of the many contributors, potential contributors, referees, the publisher, and numerous other interested parties, to all of whom I am deeply grateful. To all those who waited, please accept my apologies. I trust that this volume will be found to have been worth the wait.
This volume begins with Walter Whiteley's chapter on the applications of matroid theory to the rigidity of frameworks: matroid constructions prove to be rather useful and matroid terminology provides a helpful language for the basic results of this theory. Next we have Deza's chapter on the beautiful applications of matroid theory to a special aspect of combinatorial designs, namely perfect matroid designs. In Chapter 3, Oxley considers ways of generalizing the matroid axioms to infinite ground sets, and Simões-Pereira's chapter on matroidal families of graphs discusses other ways of defining a matroid on the edge set of a graph than the usual graphic matroid method. Next, Rival and Stanford consider two questions on partition lattices. These lattices are a special case of geometric lattices and the inclusion of this chapter will provide a lattice-theoretic perspective which has been lacking in much current matroid research (but which seems alive and well in oriented matroids). Then we have the comprehensive survey by Brylawski and Oxley of the Tutte polynomial and Tutte-Grothendieck invariants. These express the deletion- contraction decomposition that is so important within matroid theory and some of its important applications, namely graph theory and coding theory.
In this paper we characterize the universal pointed actions of a semigroup S on a compact space such that the orbit of the distinguished point is dense; such actions are called transitive. The characterization is given in terms of the universal right topological monoidal compactification of S. All transitive actions are shown to arise as quotients modulo left congruences on this universal compactification. Minimal actions are considered, and close connections between these and minimal left ideals of the compactification are derived.
On a convex surface S ⊂ Rd, two points x, y are conjugate if there are at least two shortest paths, called segments, from x to y. This paper is about the set of points conjugate to some fixed point xєS.
The problem of finding rational points on varieties defined by two additive cubic equations has attracted some interest. Davenport and Lewis [12], Cook [8] and Vaughan [16] showed that the pair of equations
with integer coefficients a,, bt always has a nontrivial solution when s = 18, s = 17, and 5 = 16 respectively. Vaughan's result in s = 16 variables is best possible since there are examples of pairs of equations (1) with s = 15 which fail to vanish simultaneously in the 7-adic field. However if the existence of a 7-adic solution is assured then Baker and Briidern [2], building on work of Cook [9], showed that s = 16 could be replaced by s = 15, and recently Briidern [5] has obtained the result with s = 14.
The flow induced by an oscillating circular cylinder which may perform transverse, torsional and axial vibrations is considered. The steady streaming associated with purely transverse vibrations of the cylinder may be significantly modified by the presence of, and interaction with, torsional oscillations. Similarly the interaction between the transverse and axial vibrations introduces a modification to the axial flow, which results in a steady streaming motion in the axial direction.
Let K0(x) be a simple transcendental extension of a field K0, υ0 be a valuation of K0 with value group G0 and residue field K0. Suppose is an inclusion of totally ordered abelian groups with [G1: G0] < ∞ such that G is the direct sum of G1 and an infinite cyclic group. It is proved that there exists an (explicitly constructible) valuation υ of K0(x) extending υ0 such that the value group of υ is G and its residue field is k, where k is a given finite extension of k0. This is analogous to a result of Matignon and Ohm [2, Corollary 3.2] for residually non-algebraic prolongations of υ0 to K0(x).
Let Q(x) = Q(x1,…, xn) є ęZ x1, …, xn] be a quadratic form. The primary purpose of this paper is to bound the smallest non-zero solution of the congruence Q(x) = 0 (mod q). The problem may be formulated as follows. We ask for the least bound Bn(q) such that, for any Ki > 0 satisfying
and any Q, the congruence has a non-zero solution satisfying
for large positive values of the parameter u, are considered for ζ in some domain Δ which includes the turning-point ζ = 0. The functions ψ(ζ) and ω(ζ) are holomorphic for ζ є Δ
In typical linear programming problems, we are concerned with finding non-negative integers {x1,…, xn} that maximize a linear form c1x1 + … + cnxn, subject to a number of linear inequalities, for The maximum is necessarily attained at one of the vertices of the convex hull of integer points defined by the inequalities, so we have an interest in estimating the number M of these vertices. We give two results; one improving an upper bound result for M of Hayes and Larman concerning the Knapsack polytope, the other an example showing that, in 3-dimensions, it is possible to choose the coefficients aij to obtain a lower bound for M.