To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Although to penetrate into the intimate mysteries of nature and thence to learn the true causes of phenomena is not allowed to us, nevertheless it can happen that a certain fictive hypothesis may suffice for explaining many phenomena.
–Leonard Euler
As discussed in Chapter 1, both structural dynamics and aeroelasticity are built on the foundations of dynamics and structural mechanics. Therefore, in this chapter, we review the fundamentals of mechanics for particles, rigid bodies, and simple structures such as strings and beams. The review encompasses laws of motion, expressions for energy and work, and background assumptions. The chapter concludes with a brief discussion of the behavior of single-degree-of-freedom systems and the notion of stability.
The field of structural dynamics addresses the dynamic deformation behavior of continuous structural configurations. In general, load-deflection relationships are nonlinear, and the deflections are not necessarily small. In this chapter, to facilitate tractable, analytical solutions, we restrict our attention to linearly elastic systems undergoing small deflections—conditions that typify most flight-vehicle operations.
However, some level of geometrically nonlinear theory is necessary to arrive at a set of linear equations for strings, membranes, helicopter blades, turbine blades, and flexible rods in rotating spacecraft. Among these problems, only strings are discussed herein. Indeed, linear equations of motion for free vibration of strings cannot be obtained without initial consideration and subsequent careful elimination of nonlinearities.
When we wish to use Newton's laws to write the equations of motion of a particle or a system of particles, we must be careful to include all the forces of the system. The Lagrangean form of the equations of motion that we derive herein has the advantage that we can ignore all forces that do no work (e.g., forces at frictionless pins, forces at a point of rolling contact, forces at frictionless guides, and forces in inextensible connections). In the case of conservative systems (i.e., systems for which the total energy remains constant), the Lagrangean method gives us an automatic procedure for obtaining the equations of motion provided only that we can write the kinetic and potential energies of the system.
Degrees of Freedom
Before proceeding to develop the Lagrange equations, we must characterize our dynamical systems in a systematic way. The most important property of this sort for our present purpose is the number of independent coordinates that we must know to completely specify the position or configuration of our system. We say that a system has n degrees of freedom if exactly n coordinates serve to completely define its configuration.
EXAMPLE 1 A free particle in space has three degrees of freedom because we must know three coordinates—x, y, z, for example – to locate it.
The pilot of the airplane … succeeded in landing with roughly two-thirds of his horizontal tail surface out of action; some others have, unfortunately, not been so lucky. … The flutter problem is now generally accepted as a problem of primary concern in the design of current aircraft structures. Stiffness criteria based on flutter requirements are, in many instances, the critical design criteria. … There is no evidence that flutter will have any less influence on the design of aerodynamically controlled booster vehicles and re-entry gliders than it has, for instance, on manned bombers.
–R. L. Bisplinghoff and H. Ashley in Principles of Aeroelasticity, John Wiley and Sons, Inc., 1962
Chapter 3 addressed the subject of structural dynamics, which is the study of phenomena associated with the interaction of inertial and elastic forces in mechanical systems. In particular, the mechanical systems considered were one-dimensional, continuous configurations that exhibit the general structural-dynamic behavior of flight vehicles. If in the analysis of these structural-dynamic systems aerodynamic loading is included, then the resulting dynamic phenomena may be classified as aeroelastic. As observed in Chapter 4, aeroelastic phenomena can have a significant influence on the design of flight vehicles. Indeed, these effects can greatly alter the design requirements that are specified for the disciplines of performance, structural loads, flight stability and control, and even propulsion. In addition, aeroelastic phenomena can introduce catastrophic instabilities of the structure that are unique to aeroelastic interactions and can limit the flight envelope.
A thin liquid film subject to a temperature gradient is known to deform under the action of thermocapillary stresses which induce convective cells. The free surface deformation can be thought of as the signature of the imposed temperature gradient, and this study investigates the inverse problem of trying to reconstruct the temperature field from known free surface variations. The present work builds on the analysis of Tan et al. [“Steady thermocapillary flows of thin liquid layers I. Theory”, Phys. Fluids A2 (1990) 313–321, doi:10.1063/1.857781] which provides a long-wave evolution equation for the fluid film thickness variation on nonuniformly heated substrates and proposes a solution strategy for the planar flow version of this inverse problem. The present analysis reveals a particular case for which there exists an explicit, closed-form solution expressing the local substrate temperature in terms of the local film thickness and its spatial derivatives. With some simplifications, this analysis also shows that this solution applies to three-dimensional flows. The temperature reconstruction strategies are successfully tested against “artificial” experimental data (obtained by solving the direct problem for known temperature profiles) and actual experimental data.
The instability of fluid flows is a key topic in classical fluid mechanics because it has huge repercussions for applied disciplines such as chemical engineering, hydraulics, aeronautics, and geophysics. This modern introduction is written for any student, researcher, or practitioner working in the area, for whom an understanding of hydrodynamic instabilities is essential. Based on a decade's experience of teaching postgraduate students in fluid dynamics, this book brings the subject to life by emphasizing the physical mechanisms involved. The theory of dynamical systems provides the basic structure of the exposition, together with asymptotic methods. Wherever possible, Charru discusses the phenomena in terms of characteristic scales and dimensional analysis. The book includes numerous experimental studies, with references to videos and multimedia material, as well as over 150 exercises which introduce the reader to new problems.
Epstein presents the fundamental concepts of modern differential geometry within the framework of continuum mechanics. Divided into three parts of roughly equal length, the book opens with a motivational chapter to impress upon the reader that differential geometry is indeed the natural language of continuum mechanics or, better still, that the latter is a prime example of the application and materialisation of the former. In the second part, the fundamental notions of differential geometry are presented with rigor using a writing style that is as informal as possible. Differentiable manifolds, tangent bundles, exterior derivatives, Lie derivatives, and Lie groups are illustrated in terms of their mechanical interpretations. The third part includes the theory of fiber bundles, G-structures, and groupoids, which are applicable to bodies with internal structure and to the description of material inhomogeneity. The abstract notions of differential geometry are thus illuminated by practical and intuitively meaningful engineering applications.
We present a stability analysis of steady-state solutions of a continuous-time predator–prey population dynamics model subject to Allee effects on the prey population which occur at low population density. Numerical simulations show that the system subject to an Allee effect takes a much longer time to reach its stable steady-state solution. This result differs from that obtained for the discrete-time version of the same model.
A class of problems modelling the contact between nonlinearly elastic materials and rigid foundations is analysed for static processes under the small deformation hypothesis. In the present paper, the contact between the body and the foundation can be frictional bilateral or frictionless unilateral. For every mechanical problem in the class considered, we derive a weak formulation consisting of a nonlinear variational equation and a variational inequality involving dual Lagrange multipliers. The weak solvability of the models is established by using saddle-point theory and a fixed-point technique. This approach is useful for the development of efficient algorithms for approximating weak solutions.
In the long run men hit only what they aim at. Therefore, though they
should fail immediately, they had better aim at something high.
– H. D. Thoreau
Heat transfer is a result of the spatial variation of temperature within a medium, or within adjacent media, in which thermal energy may be stored, converted to or from other forms of energy and work, or exchanged with the surroundings. Heat transfer occurs in many natural and engineered systems. As an engineering discipline, heat transfer deals with the innovative use of the principles of thermal science in solving the relevant technological problems. This introductory textbook aims to provide undergraduate engineering students with the knowledge (principles, materials, and applications) they need to understand and analyze the heat transfer problems they are likely to encounter in practice. The approach of this book is to discuss heat transfer problems (in the search for innovative and optimal solutions) and engineering analyses, along with the introduction of the fundamentals and the analytical methods used in obtaining solutions. Although the treatment is basically analytical, empiricism is acknowledged because it helps in the study of more complex geometries, fluid flow conditions, and other complexities that are most suitably dealt with empirically.
A combination of descriptive and analytical discussions are used to enable students to understand and articulate a broad range of problems.
Chapter 8 is found on the Web site www.cambridge.org/kaviany. Chapter 8 is about heat transfer analysis and addresses control of heat transfer, in conjunction with energy storage and conversion, for innovative applications and optimized performance in thermal systems. This heat transfer can occur at various, cascading length scales within the system. The analysis is done by modeling the transport, storage, and conversion of thermal energy as thermal circuits. The elements of these circuits, i.e., mechanisms and models of resistances, storage, and energy conversion, have been discussed in Chapters 2 to 7. In this chapter we consider their combined usage in some innovative, significant, and practical thermal systems. We begin by addressing the primary thermal functions of heat transfer media and bounding surfaces. Then we summarize the elements of thermal engineering analysis. These include the need for assumptions and approximations for reduction of the physical models and conceptual thermal processes to thermal circuit models. Next we give five examples (Examples 8.1 to 8.5), in detail, to demonstrate the application of the fundamentals and relations developed in the text, along with the use of software. The examples are selected for their innovative potentials. There are also five end-of-chapter problems (Problems 8.1 to 8.5).