To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper is concerned with the problem of existence and uniqueness of weak and classical solutions for a fourth-order semilinear boundary value problem. The existence and uniqueness for weak solutions follows from standard variational methods, while similar uniqueness results for classical solutions are derived using maximum principles.
We consider a theoretical model for the flow of Newtonian fluid through a long flexible-walled channel which is formed from four compliant and rigid compartments arranged alternately in series. We drive the flow using a fixed upstream flux and derive a spatially one-dimensional model using a flow profile assumption. The compliant compartments of the channel are assumed subject to a large external pressure, so the system admits a highly collapsed steady state. Using both a global (linear) stability eigensolver and fully nonlinear simulations, we show that these highly collapsed steady states admit a primary global oscillatory instability similar to observations in a single channel. We also show that in some regions of the parameter space the system admits a secondary mode of instability which can interact with the primary mode and lead to significant changes in the structure of the neutral stability curves. Finally, we apply the predictions of this model to the flow of blood through the central retinal vein and examine the conditions required for the onset of self-excited oscillation. We show that the neutral stability curve of the primary mode of instability discussed above agrees well with canine experimental measurements of the onset of retinal venous pulsation, although there is a large discrepancy in the oscillation frequency.
The withdrawal of water with a free surface through a line sink from a two-dimensional, vertical sand column is considered using the hodograph method and a novel spectral method. Hodograph solutions are presented for slow flow and for critical, limiting steady flows, and these are compared with spectral solutions to the steady problem. The spectral method is then extended to obtain unsteady solutions and hence the evolution of the phreatic surface to the steady solutions when they exist. It is found that for each height of the interface there is a unique critical coning value of flow rate, but also that the value obtained is dependent on the flow history.
The Kuramoto–Sivashinsky equation is a prototypical chaotic nonlinear partial differential equation (PDE) in which the size of the spatial domain plays the role of a bifurcation parameter. We investigate the changing dynamics of the Kuramoto–Sivashinsky PDE by calculating the Lyapunov spectra over a large range of domain sizes. Our comprehensive computation and analysis of the Lyapunov exponents and the associated Kaplan–Yorke dimension provides new insights into the chaotic dynamics of the Kuramoto–Sivashinsky PDE, and the transition to its one-dimensional turbulence.
Rayleigh–Taylor instability occurs when a heavier fluid overlies a lighter fluid, and the two seek to exchange positions under the effect of gravity. We present a linearized theory for arbitrary three-dimensional (3D) initial disturbances that grow in time, and calculate the evolution of the interface for early times. A new spectral method is introduced for the fully 3D nonlinear problem in a Boussinesq fluid, where the interface between the light and heavy fluids is approximated with a smooth but rapid density change in the fluid. The results of large-scale numerical calculation are presented in fully 3D geometry, and compared and contrasted with the early-time linearized theory.
We consider fluid in a channel of finite height. There is a circular hole in the channel bottom, through which fluid of a lower density is injected and rises to form a plume. Viscous boundary layers close to the top and bottom of the channel are assumed to be so thin that the viscous fluid effectively slips along each of these boundaries. The problem is solved using a novel spectral method, in which Hankel transforms are first used to create a steady-state axisymmetric (inviscid) background flow that exactly satisfies the boundary conditions. A viscous correction is then added, so as to satisfy the time-dependent Boussinesq Navier–Stokes equations within the fluid, leaving the boundary conditions intact. Results are presented for the “lazy” plume, in which the fluid rises due only to its own buoyancy, and we study in detail its evolution with time to form an overturning structure. Some results for momentum-driven plumes are also presented, and the effect of the upper wall of the channel on the evolution of the axisymmetric plume is discussed.
A system of two coupled nonlinear spectral transport equations is derived for two obliquely interacting narrowband Gaussian random surface wavetrains, slowly varying in space and time. Using these two equations, stability analysis is performed for two initially homogeneous wave spectra, subject to unidirectional perturbations. We observe that the effect of randomness produces a decrease in the growth rate of instability, but it is higher than the growth for a single wavetrain. The growth rate of instability is observed to decrease with the increase in spectral width.
Some optimal choices for a parameter of the Dai–Liao conjugate gradient method are proposed by conducting matrix analyses of the method. More precisely, first the $\ell _{1}$ and $\ell _{\infty }$ norm condition numbers of the search direction matrix are minimized, yielding two adaptive choices for the Dai–Liao parameter. Then we show that a recent formula for computing this parameter which guarantees the descent property can be considered as a minimizer of the spectral condition number as well as the well-known measure function for a symmetrized version of the search direction matrix. Brief convergence analyses are also carried out. Finally, some numerical experiments on a set of test problems related to constrained and unconstrained testing environment, are conducted using a well-known performance profile.