To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Edited by
Alik Ismail-Zadeh, Karlsruhe Institute of Technology, Germany,Fabio Castelli, Università degli Studi, Florence,Dylan Jones, University of Toronto,Sabrina Sanchez, Max Planck Institute for Solar System Research, Germany
Abstract: There is a fundamental need to understand and improve the errors and uncertainties associated with estimates of seasonal snow analysis and prediction. Over the past few decades, snow cover remote sensing techniques have increased in accuracy, but the retrieval of spatially and temporally continuous estimates of snow depth or snow water equivalent remains challenging tasks. Model-based snow estimates often bear significant uncertainties due to model structure and error-prone forcing data and parameter estimates. A potential method to overcome model and observational shortcomings is data assimilation. Data assimilation leverages the information content in both observations and models while minimising inherent limitations that result from uncertainty. This chapter reviews current snow models, snow remote sensing methods, and data assimilation techniques that can reduce uncertainties in the characterisation of seasonal snow.
Edited by
Alik Ismail-Zadeh, Karlsruhe Institute of Technology, Germany,Fabio Castelli, Università degli Studi, Florence,Dylan Jones, University of Toronto,Sabrina Sanchez, Max Planck Institute for Solar System Research, Germany
Edited by
Alik Ismail-Zadeh, Karlsruhe Institute of Technology, Germany,Fabio Castelli, Università degli Studi, Florence,Dylan Jones, University of Toronto,Sabrina Sanchez, Max Planck Institute for Solar System Research, Germany
Edited by
Alik Ismail-Zadeh, Karlsruhe Institute of Technology, Germany,Fabio Castelli, Università degli Studi, Florence,Dylan Jones, University of Toronto,Sabrina Sanchez, Max Planck Institute for Solar System Research, Germany
Edited by
Alik Ismail-Zadeh, Karlsruhe Institute of Technology, Germany,Fabio Castelli, Università degli Studi, Florence,Dylan Jones, University of Toronto,Sabrina Sanchez, Max Planck Institute for Solar System Research, Germany
Abstract: Geomagnetic data assimilation aims at constraining the state of the geodynamo working at the Earth’s deep interior by sparse magnetic observations at and above the Earth’s surface. Due to difficulty separating the different magnetic field sources in the observations, spectral models of the geomagnetic field are generally used as inputs for data assimilation. However, the assimilation of raw pointwise observations can be relevant within certain configurations, specifically with paleomagnetic and historical geomagnetic data. Covariance localisation, which is a key ingredient to the assimilation performance in an ensemble framework, is relatively unexplored, and differs with respect to spectral and pointwise observations. This chapter introduces the main characteristics of geomagnetic data and magnetic field models, and explores the role of model and observation covariances and localisation in typical assimilation set-ups, focusing on the use of 3D dynamo simulations as the background model.
Edited by
Alik Ismail-Zadeh, Karlsruhe Institute of Technology, Germany,Fabio Castelli, Università degli Studi, Florence,Dylan Jones, University of Toronto,Sabrina Sanchez, Max Planck Institute for Solar System Research, Germany
Abstract: Operational forecasts of volcanic clouds are a key decision-making component for civil protection agencies and aviation authorities during the occurrence of volcanic crises. Quantitative operational forecasts are challenging due to the large uncertainties that typically exist on characterising volcanic emissions in real time. Data assimilation, including source term inversion, has long been recognised by the scientific community as a mechanism to reduce quantitative forecast errors. In terms of research, substantial progress has occurred during the last decade following the recommendations from the ash dispersal forecast workshops organised by the International Union of Geodesy and Geophysics (IUGG) and the World Meteorological Organization (WMO). The meetings held in Geneva in 2010–11 in the aftermath of the 2010 Eyjafjallajökull eruption identified data assimilation as a research priority. This Chapter reviews the scientific progress and its transfer into operations, which is leveraging a new generation of operational forecast products.
Edited by
Alik Ismail-Zadeh, Karlsruhe Institute of Technology, Germany,Fabio Castelli, Università degli Studi, Florence,Dylan Jones, University of Toronto,Sabrina Sanchez, Max Planck Institute for Solar System Research, Germany
Abstract: Lava flow and lava dome growth are two main manifestations of effusive volcanic eruptions. Less-viscous lava tends to flow long distances depending on slope topography, heat exchange with the surroundings, eruption rate, and the erupted magma rheology. When magma is highly viscous, its eruption on the surface results in a lava dome formation, and an occasional collapse of the dome may lead to a pyroclastic flow. In this chapter, we consider two models of lava dynamics: a lava flow model to determine the internal thermal state of the flow from its surface thermal observations, and a lava dome growth model to determine magma viscosity from the observed lava dome morphological shape. Both models belong to a set of inverse problems. In the first model, the lava thermal conditions at the surface (at the interface between lava and the air) are known from observations, but its internal thermal state is unknown. A variational (adjoint) assimilation method is used to propagate the temperature and heat flow inferred from surface measurements into the interior of the lava flow. In the second model, the lava dome viscosity is estimated based on a comparison between the observed and simulated morphological shapes of lava dome shapes using computer vision techniques.
from
7
-
Data Assimilation in Hydrological Sciences
Edited by
Alik Ismail-Zadeh, Karlsruhe Institute of Technology, Germany,Fabio Castelli, Università degli Studi, Florence,Dylan Jones, University of Toronto,Sabrina Sanchez, Max Planck Institute for Solar System Research, Germany
Edited by
Alik Ismail-Zadeh, Karlsruhe Institute of Technology, Germany,Fabio Castelli, Università degli Studi, Florence,Dylan Jones, University of Toronto,Sabrina Sanchez, Max Planck Institute for Solar System Research, Germany
Sending microwaves through bauxite ore allows almost continuous measurement of moisture content during offload by conveyor belt from a ship. Data and results from a microwave analyser were brought to a European Study Group with Industry at the University of Limerick, with the over-arching question of whether the results are accurate enough. The analyser equipment uses linear regression against phase shifts and signal attenuation to infer moisture content in real time. Simple initial modelling conducted during the Study Group supports this use of linear regression for phase shift data. However, that work also revealed striking and puzzling differences between model and attenuation data.
We present an improved model that allows for multiple reflections of travelling microwaves within the bauxite and in the air above it. Our new model uses four differential equations to describe how electric fields change with distance in each of four layers. By solving these equations and taking reflections into account, we can accurately predict what the receiving antenna will pick up.
Our new solution provides much-improved matches to data from the microwave analyser, and indicates the deleterious effects of reflections. Modelled signal strength behaviour features a highly undesirable noninvertible dependence on bauxite mixture permittivity.
Practical measures that might be expected to reduce the effects of microwave reflections and improve the accuracy of microwave analyser results are suggested based on our improved model solution. This modelling approach and these results are anticipated to extend to the analysis of moisture content during transport on conveyor belts of other ores, slurries, coal, grains and pharmaceutical powders, especially when the depth of the conveyed material is variable.
In this paper, we investigate the thermal evolution in a one-dimensional bagasse stockpile. The mathematical model involves four unknowns: the temperature, oxygen content, liquid water content and water vapour content. We first nondimensionalize the model to identify dominant terms and so simplify the system. We then calculate solutions for the approximate and full system. It is shown that under certain conditions spontaneous combustion will occur. Most importantly, we show that spontaneous combustion can be avoided by sequential building. To be specific, in a situation where, say, a $4.7\,$m stockpile can spontaneously combust, we could construct a $3\,$m pile and then some days later add another $1.7\,$m to produce a stable $4.7\,$m pile.
Many contemporary problems within the Earth sciences are complex, and require an interdisciplinary approach. This book provides a comprehensive reference on data assimilation and inverse problems, as well as their applications across a broad range of geophysical disciplines. With contributions from world leading researchers, it covers basic knowledge about geophysical inversions and data assimilation and discusses a range of important research issues and applications in atmospheric and cryospheric sciences, hydrology, geochronology, geodesy, geodynamics, geomagnetism, gravity, near-Earth electron radiation, seismology, and volcanology. Highlighting the importance of research in data assimilation for understanding dynamical processes of the Earth and its space environment and for predictability, it summarizes relevant new advances in data assimilation and inverse problems related to different geophysical fields. Covering both theory and practical applications, it is an ideal reference for researchers and graduate students within the geosciences who are interested in inverse problems, data assimilation, predictability, and numerical methods.
A viscous fluid is confined between two smooth horizontal walls, in a vertical channel. The upper wall may move with constant speed, but the lower wall is stationary and a portion of it is heated. A plume of heated fluid develops, and may also be swept downstream by the motion of the upper wall. When the heating effect is small and the upper plate does not move, a closed-form solution for the temperature profile is presented. A numerical spectral method is then presented, and allows highly accurate nonlinear solutions to be obtained, for the temperature and the fluid motion. These are compared against the closed-form solution in the linearized case, and the effects of nonlinearity on temperature and velocity are revealed. The results also show that periodic plume shedding from the heated region can occur in the nonlinear case.
This chapter presents a systematic theory of generalized (or universal) Fechnerian scaling, based on the intuition underlying Fechner’s original theory. The intuition is that subjective distances among stimuli are computed by cumulating small discriminability values between “neighboring” stimuli. A stimulus space is supposed to be endowed by a dissimilarity function, computed from a discrimination probability function for any pair of stimuli chosen in two distinct observation areas. On the most abstract level, one considers all possible chains of stimuli leading from stimulus a to stimulus b and back to a, and takes the infimum of the sums of the dissimilarities along these chains as the subjective distance between a and b. In arc-connected spaces, the cumulation of dissimilarity values along all possible chains reduces to their cumulation along continuous paths, leading to a fully fledged metric geometry. In topologically Euclidean spaces, the cumulation along paths further reduces to integration along smooth paths, and the geometry in question acquires the form of a generalized Finsler geometry. The chapter also discusses Fechner’s original derivation of his logarithmic law, observation sorites paradox, a generalized Floyd--Warshall algorithm for computing metric distances from dissimilarities, and an ultra-metric version and data-analytic application of Fechnerian scaling.
Encoding models of neuroimaging data combine assumptions about underlying neural processes with knowledge of the task and the type of neuroimaging technique being used to produce equations that predict values of the dependent variable that is measured at each recording site (e.g., the fMRI BOLD response). Voxel-based encoding models include an encoding model that predicts how every hypothesized neural population responds to each stimulus, and a measurement model that first transforms neural population responses into aggregate neural activity and then into values of the dependent variable being measured. Encoding models can be inverted to produce decoding schemes that use the observed data to make predictions about what stimulus was presented on each trial, thereby allowing unique tests of a mathematical model. Representational similarity analysis is a multivariate method that provides unique tests of a model by comparing its predicted similarity structures to similarity structures extracted from neuroimaging data. Model-based fMRI is a set of methods that were developed to test the validity of purely behavioral computational models against fMRI data. Collectively, encoding methods provide useful and powerful new tests of models – even purely cognitive models – that would have been considered fantasy just a few decades ago.
Approximate Bayesian analysis is presented as the solution for complex computational models where no explicit maximum likelihood estimation is possible. The activation-suppression racemodel (ASR), which does have a likelihood amenable to Markov chain Monte Carlo methods, is used to demonstrate the accuracy with which parameters can be estimated with the approximate Bayesian methods.
Cognitive diagnosis models originated in the field of educational measurement as a psychometric tool to provide finer-grained information more suitable for formative assessment. Typically,but not necessarily, these models classify examinees as masters or nonmasters on a set of binary attributes. This chapter aims to provide a general overview of the original models and the extensions, and methodological developments, that have been made in the last decade. The main topics covered in this chapter include model estimation, Q-matrix specification, model fit evaluation, and procedures for gathering validity and reliability evidences. The chapter ends with a discussion of future trends in the field.
Response inhibition refers to an organism’s ability to suppress unwanted impulses, or actions and responses that are no longer required or have become inappropriate.In the stop-signal task, participants perform a response time task (go task), and occasionally, the go stimulus is followed by a stop signal after a variable delay, indicating subjects to withhold their response (stop task). The main interest of modeling is in estimating the unobservable latency of the stopping process as a characterization of the response inhibition mechanism. Here we analyze and compare the underlying assumptions of different models, including parametric and non-parametric versions of the race model. New model classes based on the concept of copulas are introduced and a number of unsolved problems facing all existing models are pointed out.