To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Many physical processes are described by elliptic or parabolic partial differential equations. For linear stability problems associated with such equations, the inverse Laplacian provides a very effective preconditioner. In addition, it is also readily available in most scientific calculations in the form of a Poisson solver or an implicit diffusive timestep. We incorporate Laplacian preconditioning into the inverse Arnoldi method, using BiCGSTAB to solve the large linear systems. Two successful implementations are described: spherical Couette flow described by the Navier-Stokes equations and Bose-Einstein condensation described by the nonlinear Schrödinger equation.
This paper studies outflow of a light fluid from a point source, starting from an initially spherical bubble. This region of light fluid is embedded in a heavy fluid, from which it is separated by a thin interface. A gravitational force directed radially inward toward the mass source is permitted. Because the light inner fluid is pushing the heavy outer fluid, the interface between them may be unstable to small perturbations, in the Rayleigh–Taylor sense. An inviscid model of this two-layer flow is presented, and a linearized solution is developed for early times. It is argued that the inviscid solution develops a point of infinite curvature at the interface within finite time, after which the solution fails to exist. A Boussinesq viscous model is then presented as a means of quantifying the precise effects of viscosity. The interface is represented as a narrow region of large density gradient. The viscous results agree well with the inviscid theory at early times, but the curvature singularity of the inviscid theory is instead replaced by jet formation in the viscous case. This may be of relevance to underwater explosions and stellar evolution.
In this paper we present computer-assisted proofs of a number of results in theoretical fluid dynamics and in quantum mechanics. An algorithm based on interval arithmetic yields provably correct eigenvalue enclosures and exclosures for non-self-adjoint boundary eigenvalue problems, the eigenvalues of which are highly sensitive to perturbations. We apply the algorithm to: the Orr–Sommerfeld equation with Poiseuille profile to prove the existence of an eigenvalue in the classically unstable region for Reynolds number R=5772.221818; the Orr–Sommerfeld equation with Couette profile to prove upper bounds for the imaginary parts of all eigenvalues for fixed R and wave number α; the problem of natural oscillations of an incompressible inviscid fluid in the neighbourhood of an elliptical flow to obtain information about the unstable part of the spectrum off the imaginary axis; Squire’s problem from hydrodynamics; and resonances of one-dimensional Schrödinger operators.
Linear stability of an incompressible triple-deck flow over a wall roughness is considered for disturbances of high frequency. The wall roughness consists of two relatively short obstacles placed far apart on an otherwise flat surface. It is shown that the flow is unstable to feedback or global mode disturbances. The feedback loop is formed by algebraically decaying disturbances propagating upstream and weakly growing Tollmien-Schlichting waves travelling downstream and as such represents an interaction between modes from continuous and discrete spectra of the corresponding parallel-flow problem. An example of growth rate calculation for a specific roughness is considered.
The temporal and spatial linear instability of Poiseuille flow through pipes of arbitrary cross-section is discussed for large Reynolds numbers (R). For a pipe whose aspect ratio is finite, neutral stability (lower branch) is found to be governed by disturbance modes of large axial wavelength (of order hR, where h is a characteristic cross-sectional dimension). By contrast, spatial instability for finite aspect ratios is governed by length scales between O(h) and O(hR). When the aspect ratio is increased to O(R1/7), however, these two characteristic length scales both become O(R1/7h) and a match with plane channel flow instability is achieved. Thus the general cross-section produces temporal and spatial instability if the aspect ratio is O(R1/7). Further, in the flow in a rectangular pipe neutral stability (lower branch) exists for some finite aspect ratios, while for the flow in any non-circular elliptical pipe spatial instability is possible. It is suggested that both temporal and spatial instability occur for a wide range of pipe cross-sections of finite aspect ratio. Part 2 (Smith 1979a), which studies the upper branch neutral stability, confirms the importance of the O(hR) scale modes in neutral stability for finite aspect ratios.
A study complementary to Part 1 (Smith 1979) is made of the linear stability characteristics, at high Reynolds number (R), of Poiseuille How through tubes with closed cross-sections. The first significant deviation of the upper branch of the neutral stability curve (Part 1 having described the lower bilanch) from that of plane Poiseuille flow arises when the aspect ratio is decreased from infinity to O(R1/11). The axial wavenumber α on the upper branch is then O(R-1/11). A further decrease of the aspect ratio, to a finite value, forces this α to fall sharply to O(R-1). A similar phenomenon occurs for the lower branch (Part 1). Thus the two branches are likely to meet only when the aspect ratio becomes finite, with the neutrally stable disturbances then having very large axial length scales.
A two-dimensional fluid layer of height d is confined laterally by rigid sidewalls distance 2Ld apart, where L, the semi-aspect ratio of the layer, is large. Constant temperatures are maintained at the upper and lower boundaries while at the sidewalls it is assumed that the horizontal heat flux has magnitude λ. If λ = 0 (perfect insulation) a finite amplitude motion sets in when the Rayleigh number R reaches a critical value Rc, but in part I (Daniels 1977) it was shown that if λ = O(L−1) this bifurcation (in a state diagram of amplitude versus Rayleigh number) is displaced into a single stable solution in the region |R – Rc| = O(L−2), representing a smooth increase in amplitude of the cellular motion with Rayleigh number. All other solutions (or “secondary modes”) in this region were shown to be unstable. In the present paper an examination of the two intermediate regimes λ − O(L−5/2) and λ = O(L−2) is carried out, to trace the location of an additional stable solution in the form of a secondary mode, which stems from Rc when λ = 0, and which in the limit as λL2 → ∞ is shown to be removed from the region ߋR − Rc| = 0(L−2), consistent with the results of I.
The stability of a two-dimensional vortex sheet against small disturbances in the plane of flow is examined. An integro-differential equation for the disturbances is derived and the possibility of solving it approximately is discussed. The approximation is equivalent to saying that short waves grow in a fashion determined by the local strength of the vortex sheet and it is shown that this need not be true throughout the evolution of the disturbance unless the growth rate is the same everywhere. It is possible for the disturbance on a distant part of the vortex sheet to control what happens locally, if the disturbance on the distant part is growing more rapidly. The approximate theory is applied to the tightly-wound spirals of aerodynamic interest and these are shown to be stable.
The stability against small disturbances which do not bend the vortex lines of a circular cylindrical vortex sheet of variable radius is examined. If the jump in tangential velocity across the sheet falls off with time faster than (time)–íthe disturbances are bounded (or grow less rapidly than linearly with time) so that the sheet is effectively stable. If the tangential velocity jump falls off with time slower than (time)–í the sheet is unstable.
The equations governing the evolution of the modulated amplitude of a pointcentred disturbance to a slightly supercritical flow are shown to have solutions which become infinite at a finite time and at a single point. The amplitude develops a sharp peak and the structure of this peak is found, for real and complex coefficients in the governing equations. Such a solution can only occur if the coefficients satisfy certain conditions
The properties of the solution of the differential equation governing the evolution of localised line-centred disturbances to a marginally unstable plane parallel flow were described by Hocking and Stewartson (1972). A corresponding study of the properties when the initial disturbance is point-centred is presented here. A localised burst at a finite time can be produced, for certain values of the coefficients which can be determined analytically. When the equation permits solutions with circular symmetry, two kinds of bursting solutions, as well as solutions which remain finite, are possible, but the boundary between bursting and finite solutions could not be determined analytically.