To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We detail a construction of totally symmetric surfaces of constant mean curvature 0≤H<1 in hyperbolic 3-space of sectional curvature −1 via the generalized Weierstrass type representation.
In this paper we describe the moduli spaces of degree d branched superminimal immersions of a compact Riemann surface of genus g into S4. We prove that when d ≥ max {2g, g + 2}, such spaces have the structure of projectivzed fibre products and are path-connected quasi projective varieties of dimension 2d − g + 4. This generalizes known results for spaces of harmonic 2-spheres in S4.
We prove a priori estimates for the gradient and curvature of spacelike hypersurfaces moving by mean curvature in a Lorentzian manifold. These estimates are obtained under much weaker conditions than have been previously assumed. We also use mean curvature flow in the construction of maximal slices in asymptotically flat spacetimes. An essential tool is a maximum principle for sub-solutions of a parabolic operator on complete Riemannian manifolds with time-dependent metric.