To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The first chapter gave an overview of basic principles of fluid mechanics. In particular, it introduced the fundamental equations governing the motion of fluid flows. In this chapter we deal with approximation methods allowing these equations to be solved on a computer. We use a simple one-dimensional elliptic model problem in order to introduce the basic concepts. This problem will be carried throughout the chapter. Parabolic, hyperbolic, and multidimensional problems are treated in Chapters 3 and 4, respectively.
In Section 2.1 we begin with the derivation of a boundary-value problem (BVP) from a variational principle. Different types of boundary conditions are presented, with particular attention to the choice of test functions. The existence conditions for a solution are discussed within the Lax–Milgram theorem. Section 2.2 enlarges the scope to more general linear BVPs and introduces the approximation framework of Galerkin and collocation methods. In Section 2.3 we present various finite-element approximations, some of which have connections with spectral methods. Sections 2.4 and 2.5 discuss the spectral-element and the orthogonal collocation techniques, the two main forms of high-order methods studied in this book. Section 2.6 deals with the error estimation in connection with the various approximations introduced in the chapter. Section 2.7 is dedicated to some efficient solution techniques for the algebraic systems entailed by high-order methods. Finally, Section 2.8 discusses a numerical example.
In order to make the text reasonably self-contained, key mathematical notions have been gathered in two appendices.
In this work, we analyze hierarchic hp-finite element discretizations of the full, three-dimensional plate problem. Based on two-scale asymptotic expansion of the three-dimensional solution, we give specific mesh design principles for the hp-FEM which allow to resolve the three-dimensional boundary layer profiles at robust, exponential rate.We prove that, as the plate half-thickness ε tends to zero, the hp-discretization is consistent with the three-dimensional solution to any power of ε in the energy norm for the degree$p={\cal O}(\left|{\log \varepsilon}\right|)$ and with ${\cal O}({p^4})$ degrees of freedom.
By
Nira Dyn, School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel,
David Levin, School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
Subdivision schemes are efficient computational methods for the design and representation of 3D surfaces of arbitrary topology. They are also a tool for the generation of refinable functions, which are instrumental in the construction of wavelets. This paper presents various flavours of subdivision, seasoned by the personal viewpoint of the authors, which is mainly concerned with geometric modelling. Our starting point is the general setting of scalar multivariate nonstationary schemes on regular grids. We also briefly review other classes of schemes, such as schemes on general nets, matrix schemes, non-uniform schemes and nonlinear schemes. Different representations of subdivision schemes, and several tools for the analysis of convergence, smoothness and approximation order are discussed, followed by explanatory examples.
Introduction
The first work on a subdivision scheme was by de Rahm (1956). He showed that the scheme he presented produces limit functions with a first derivative everywhere and a second derivative nowhere. The pioneering work of Chaikin (1974) introduced subdivision as a practical algorithm for curve design. His algorithm served as a starting point for extensions into subdivision algorithms generating any spline functions. The importance of subdivision to applications in computer-aided geometric design became clear with the generalizations of the tensor product spline rules to control nets of arbitrary topology. This important step has been introduced in two papers, by Doo and Sabin (1978) and by Catmull and Clark (1978). The surfaces generated by their subdivision schemes are no longer restricted to representing bivariate functions, and they can easily represent surfaces of arbitrary topology.
We prove the convergence of a finite volumemethod for a noncoercive linear elliptic problem, with right-handside in the dual space of the natural energy space of the problem.
A numerically inexpensive globalization strategy of sequential quadratic programming methods (SQP-methods) for control of the instationary Navier Stokes equations is investigated. Based on the proper functional analytic setting a convergence analysis for the globalized methodis given. It is argued that the a priori formidable SQP-step can be decomposed into linear primal and linear adjoint systems, which is amenable for existing CFL-software. A report on a numerical test demonstrates the feasibility of the approach.
The stability of flat interfaces with respect to a spatial semidiscretization of a solidification model is analyzed. The considered model is the quasi-static approximation of the Stefan problem with dynamical Gibbs–Thomson law. The stability analysis bases on an argument developed by Mullins and Sekerka for the undiscretized case. The obtained stability properties differ from those with respect to the quasi-static model for certain parameter values and relatively coarse meshes. Moreover, consequences on discretization issues are discussed.
This article discusses finite element Galerkin schemes for a number of linear model problems in electromagnetism. The finite element schemes are introduced as discrete differential forms, matching the coordinate-independent statement of Maxwell's equations in the calculus of differential forms. The asymptotic convergence of discrete solutions is investigated theoretically. As discrete differential forms represent a genuine generalization of conventional Lagrangian finite elements, the analysis is based upon a judicious adaptation of established techniques in the theory of finite elements. Risks and difficulties haunting finite element schemes that do not fit the framework of discrete differential forms are highlighted.
Introduction
Most modern technology is inconceivable without harnessing electromagnetic phenomena. Hence the design and analysis of schemes for the approximate solution of electromagnetic field problems can claim a rightful place as a core discipline of numerical mathematics and scientific computing. However, for a long time it received far less attention among numerical analysts than, for instance, computational fluid dynamics and solid mechanics.
One reason might be that electromagnetism is described by a generically linear theory, in the sense that linear equations arise from basic physical principles. This is in stark contrast to continuum mechanics, where linear models only emerge through linearization of inherently nonlinear governing principles. Being linear, the fundamental laws of electromagnetism might have struck many mathematicians as ‘dull’. This view might also have been fostered by the misconception that electromagnetism basically boils down to plain second-order elliptic equations, which have been amply studied and are well understood.
The convergence of a two-scale FEM for elliptic problems in divergence form with coefficients and geometries oscillating at length scale ε << 1 is analyzed. Full elliptic regularity independent of ε is shownwhen the solution is viewed as mapping from the slow into the fast scale.Two-scale FE spaces which are able to resolve the ε scale of thesolution with work independent of ε and withoutanalytical homogenization are introduced. Robustin ε error estimates for the two-scale FE spaces are proved. Numerical experiments confirm thetheoretical analysis.
By
Moody T. Chu, Department of Mathematics, North Carolina State University, Raleigh, North Carolina, NC 27695-8205,USA,
Gene H. Golub, Department of Computer Science, Stanford University, Stanford, California, Ca 94305-9025, USA
An inverse eigenvalue problem concerns the reconstruction of a structured matrix from prescribed spectral data. Such an inverse problem arises in many applications where parameters of a certain physical system are to be determined from the knowledge or expectation of its dynamical behaviour. Spectral information is entailed because the dynamical behaviour is often governed by the underlying natural frequencies and normal modes. Structural stipulation is designated because the physical system is often subject to some feasibility constraints. The spectral data involved may consist of complete or only partial information on eigenvalues or eigenvectors. The structure embodied by the matrices can take many forms. The objective of an inverse eigenvalue problem is to construct a matrix that maintains both the specific structure as well as the given spectral property. In this expository paper the emphasis is to provide an overview of the vast scope of this intriguing problem, treating some of its many applications, its mathematical properties, and a variety of numerical techniques.
Introduction
In his book Finite-Dimensional Vector Spaces, Halmos (1974) wrote:
Almost every combination of the adjectives proper, latent, characteristic, eigen and secular, with the nouns root, number and value, has been used in the literature for what we call a proper value.
This interesting comment on the nomenclature of eigenvalue echoes the enigmatic yet important role that eigenvalues play in nature. One instance, according to Parlett (1998), is that ‘Vibrations are everywhere, and so too are the eigenvalues associated with them.’
This paper is concerned with the mathematical structure of the immersed boundary (IB) method, which is intended for the computer simulation of fluid–structure interaction, especially in biological fluid dynamics. The IB formulation of such problems, derived here from the principle of least action, involves both Eulerian and Lagrangian variables, linked by the Dirac delta function. Spatial discretization of the IB equations is based on a fixed Cartesian mesh for the Eulerian variables, and a moving curvilinear mesh for the Lagrangian variables. The two types of variables are linked by interaction equations that involve a smoothed approximation to the Dirac delta function. Eulerian/Lagrangian identities govern the transfer of data from one mesh to the other. Temporal discretization is by a second-order Runge–Kutta method. Current and future research directions are pointed out, and applications of the IB method are briefly discussed.
Introduction
The immersed boundary (IB) method was introduced to study flow patterns around heart valves and has evolved into a generally useful method for problems of fluid–structure interaction. The IB method is both a mathematical formulation and a numerical scheme. The mathematical formulation employs a mixture of Eulerian and Lagrangian variables. These are related by interaction equations in which the Dirac delta function plays a prominent role. In the numerical scheme motivated by the IB formulation, the Eulerian variables are defined on a fixed Cartesian mesh, and the Lagrangian variables are defined on a curvilinear mesh that moves freely through the fixed Cartesian mesh without being constrained to adapt to it in any way at all.
By
Michael B. Giles, University of Oxford, Computing Laboratory, Wolfson Building, Parks Road, Oxford 0X1 3QD, England,
Endre Süli, University of Oxford, Computing Laboratory, Wolfson Building, Parks Road, Oxford 0X1 3QD, England
We give an overview of recent developments concerning the use of adjoint methods in two areas: the a posteriori error analysis of finite element methods for the numerical solution of partial differential equations where the quantity of interest is a functional of the solution, and superconvergent extraction of integral functionals by postprocessing.
Introduction
Output functionals
In many scientific and engineering applications that lead to the numerical approximation of solutions to partial differential equations, the objective is merely a rough, qualitative assessment of the details of the analytical solution over the computational domain, the quantitative concern being directed towards a few output functionals, derived quantities of particular engineering or scientific relevance.
For example, in aeronautical engineering, a CFD calculation of the flow around a transport aircraft at cruise conditions might be performed to investigate whether there are any unexpected shocks on the pylon connecting the engine to the wing, or whether there is an unexpected boundary layer separation caused by the main shock on the wing's suction surface. However, the engineer's overall concern is the impact of such phenomena on the lift and drag on the aircraft, and the quality of the CFD calculation is judged, first and foremost, by the accuracy of the lift and drag predictions. The fine details of the flow field are much less important, and are used only in a qualitative manner to suggest ways in which the design may be modified to improve the lift or drag.
By
Robert I. McLachlan, IFS, Massey University, Palmerston North, New Zealand,
G. Reinout W. Quispel, Mathematics Department, La Trobe University, Bundoora, VIC 3086, Australia
I thought that instead of the great number of precepts of which logic is composed, I would have enough with the four following ones, provided that I made a firm and unalterable resolution not to violate them even in a single instance. The first rule was never to accept anything as true unless I recognized it to be certainly and evidently such…. The second was to divide each of the difficulties which I encountered into as many parts as possible, and as might be required for an easier solution.
(Descartes)
We survey splitting methods for the numerical integration of ordinary differential equations (ODEs). Splitting methods arise when a vector field can be split into a sum of two or more parts that are each simpler to integrate than the original (in a sense to be made precise). One of the main applications of splitting methods is in geometric integration, that is, the integration of vector fields that possess a certain geometric property (e.g., being Hamiltonian, or divergence-free, or possessing a symmetry or first integral) that one wants to preserve. We first survey the classification of geometric properties of dynamical systems, before considering the theory and applications of splitting in each case. Once a splitting is constructed, the pieces are composed to form the integrator; we discuss the theory of such ‘composition methods’ and summarize the best currently known methods.
In the present work the symmetrized sequential-parallel decomposition methodof the third degree precision for the solution of Cauchy abstract problemwith an operator under a split form, is presented. The third degreeprecision is reached by introducing a complex coefficient with the positivereal part. For the considered schema the explicit a priori estimation isobtained.
We consider a dynamical one-dimensional nonlinear von Kármán model for beamsdepending on a parameter ε > 0 and studyits asymptotic behavior for t large, as ε → 0. Introducing appropriate dampingmechanisms we show that the energy of solutionsof the corresponding damped models decayexponentially uniformly with respect to theparameter ε. In order for this to be true thedamping mechanism has to have the appropriatescale with respect to ε. In the limit as ε → 0 we obtain damped Berger–Timoshenko beam modelsfor which the energy tends to zero exponentiallyas well. This is done both in the case ofinternal and boundary damping. We address the sameproblem for plates with internal damping.