To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
There are infinite worlds both like and unlike this world of ours. … [W]e must believe that in all other worlds there are living creatures and plants and other things we see in this world.
–Epicurus (341–270 B.C.E.), letter to Herodotus
The young scholar clutches the book to his chest as he works his way through the crowd. Campo dei Fiori is packed; it's a jubilee year, and Rome teems with pilgrims, beggars, and pickpockets. He edges forward, brushing aside the vendors who tug at his sleeve. Days earlier, a small item in a local broadsheet caught his eye. A Dominican monk from Nola was to be put to death, having exhausted the patience and goodwill of the authorities. The scholar sighs. His heart is heavy at the prospect. It is not yet a century since the death of Leonardo, but enlightenment has dimmed so much that it seems like eons.
With difficulty, the scholar climbs scaffolding behind a merchant stall so he can see over the heads of the mob. Yelling at the far side of the square tells him that Bruno has arrived, having been paraded naked through the streets of Rome. He is bound to the stake with thick rope while a local functionary reads the charges. The scholar can only catch fragments: “impenitent heretic … failure to recant … persistent follies.”
Sometimes I think we're alone. Sometimes I think we're not. In either case, the thought is staggering.
–Buckminster Fuller, architect, designer, and visionary
If Earth's future space travelers came to this place, they would declare it a godforsaken wilderness. A trackless vista of cliffs and escarpments stretches to the horizon. Brown rock scorches under twin giant suns in a blood-red sky. The air is a thin gruel of sulfur dioxide, methane, and nitrogen. But there's more here than meets the eye. In the pore space of the rocks, something is stirring.
At a boundary layer with the deep mantle, mildly acidic water bubbles through the rock, driven by heat and pressure from the interior. Miles underground, microbes thrive in a rich brew of organics and dissolved minerals. They move by sensing magnetic fields and temperature gradients. Huge colonies begin to differentiate their functions and metabolisms to better use the available resources. Symbiotic behavior emerges.
In the course of ceaseless and random genetic variation, some organisms develop the ability to vibrate their outer membranes and sense when it is perturbed. The timing of a return ultrasound wave acts as a primitive proximity sensor. This brand of microbes maintains the spacing to garner more resources, so it rapidly dominates the colony.
As the strategy becomes more successful, the organisms with the most powerful emission or most sensitive reception must deal with a cacophony of ultrasound signals.
Bacteria on Earth can live five kilometers below the surface. They can live on nothing but rock and water, extracting energy from chemical reactions rather than sunlight. Life on Earth, and perhaps Mars and other planetary bodies, may have originated in such strange environs, and if so, the subsurface of water-rich planets, asteroids, and satellites might be home to a rich diversity of microorganisms.
–Jeffrey Taylor, Hawaii Institute of Geophysics and Planetology
In the dream, you are in an ice cave. It is starkly beautiful, suffused in blue light from an outside source. There's nothing to eat, no sustenance, just the angular planes of ice crystals. It is stunningly cold, well below freezing. Your breath billows in front of you; perspiration forms a frozen rind on your neck. You can't stay here long. Then you notice creatures working industriously along the far wall of the cave. They're oblivious to the intense cold. From the strange smell, you guess that they have antifreeze running through their veins. This place is clearly their home.
Then you awake—not to your bed but to another strange world. You are on the shores of a river, with canyon walls that rise up and disappear in the gloom. The river is acrid and filled with the worst kind of industrial effluent. The water is so acidic that it sizzles as it passes over the rocks, which are themselves discolored by chemical residue. The smell is foul and metallic, and it almost makes you gag.
What's interesting about Mars is, if it has life, then there's probably life everywhere. That's what keeps astronomers going.
–Seth Shostak, senior astronomer at the SETI Institute
Her feet crunch into the red crust. She hops tentatively, testing the feel of one-third gravity. Then a second hop, higher and more playful. Nice. Looking back she sees her spacecraft resting in a shallow depression. Squat and small, it looks like a toy. A shadow of anxiety crosses her mind. With all the trade-offs, cuts to NASA, the needs of national security, it was this or nothing: a single person sent to Mars to bring back samples. A robotic clone of her spacecraft stands ready for launch, but she knows the odds of a successful rescue are long. She's one hundred times farther from Earth than anyone in history. Utterly alone.
Yet there is nowhere else she would rather be. The geologist gets to work. Her trained eye scans the alluvial plain and settles on one particular outcropping. She moves toward it in an awkward loping motion. It's difficult to judge distances through the thin atmosphere laced with dust, where ochre rocks shade into an apricot sky. An hour later, she is there, with only the sound of her breathing for company. Along one slope of the outcropping, a raised seam, split like a wound, exposes the layers below. Perfect.
A sad spectacle. If they be inhabited, what a scope for misery and folly. If they not be inhabited, what a waste of space.
–Thomas Carlyle (1795–1881), on the plurality of worlds
The year is 2067. Earth has survived, its environment battered and bruised, and humans have muddled through, their few shining moments eclipsed by tribal squabbles over resources and religion. Many diseases have been conquered, but others have risen to take their places. The evolutionary struggle between men and microbes is at a stalemate. In an era of quantum computing, bodies of people in the western world are patrolled and retooled by medical microbots. Embedded intelligent agents ceaselessly draw on the vast web of information that permeates the air.
It was one hundred years into the space age before humans cracked the problem of interstellar travel. Fusion drives now power all major commercial aircraft, and larger craft service tourism and mining outposts throughout the Solar System. Astronomers have honed their techniques and routinely detect terrestrial planets as small as Mercury. Robot emissaries traveling at half light speed have fanned out to hundreds of the nearest stars, and a few Earth “cousins” are known.
Twenty years earlier, in 2047, one hundred people set out on a momentous journey. Fueled by the same urge that sent humans migrating across continents tens of thousands of years before, and demoralized by the loss of vision and the spiritual decay on Earth, they were the first to cut the umbilical cord and attempt to homestead a new planet.
However, the macromolecule-to-cell transition is a jump of fantastic dimensions, which lies beyond the range of testable hypothesis. In this area, all is conjecture.
–David Green and Robert Goldberger, Molecular Insights into the Living Process
The travelers look out onto the shore of a strange and hostile world. They don't leave the spacecraft; a probe shows that the atmosphere is mostly nitrogen, with smaller but lethal amounts of sulfur dioxide and methane and a hint of ammonia. Volcanoes belch gases into the sky, and the spacecraft trembles every few minutes from seismic activity. A young star, orange and bloated, perches on the horizon.
It's a young planet. The newly minted crust is still warm and plastic. Oceans have recently condensed from steam and are still kept warm and turgid by geothermal energy. Samples drilled from the crust show an age of two hundred million years—only 2 percent of cosmic time and the same fraction of the time the star will provide warmth to this planet.
Working swiftly, the visitors wrap up their experiments. It's not safe here. This soon after its formation, the planetary system is still strewn with debris. Every hour or so, the spacecraft shudders as a meteor slams into the ground nearby. There's a continuous light show overhead as smaller fragments burn up in the atmosphere. The large moon looming in the sky, which was splashed off an earlier impact, is a reminder of the potential for devastation.
It's quite peculiar to be human. Our lives are filled with event and episode, with work and recreation, with the ebb and flow of friends and family. Seen from above, our actions would seem as purposeful as the activity of bees in a hive or squirrels in a forest. Yet we each house the awareness that we're living, conscious entities. We reflect on our existence. We know that we will die. Perhaps we share self-awareness with a few other species on Earth, but no other creature has gained knowledge of its place in the largest landscapes of time and space.
The history of astronomy has been a steady march of awe and ignominy: awe at the prodigious size and age of a universe with tens of billions of galaxies, ignominy that we have no special place among those galaxies and their countless trillions of stars. Stars and nebulae and planets are the result of natural forces. Rocks and clouds weren't created for our pleasure or benefit. The last bastion of specialness is our existence. Surely life has purpose and meaning. As the poet Stephen Crane has written,
A man said to the universe:
“Sir I exist”
“However,” replied the universe,
“The fact has not created in me
A sense of obligation.”
The final step in the Copernican revolution would be the revelation that we live in a biological universe.
Exoplanet research is one of the most explosive subjects in astronomy today. More than 500 exoplanets are now known, and groups world-wide are actively involved in a broad range of observational and theoretical efforts. This book ties together these many avenues of investigation - from the perspectives of observation, technology and theory - to give a comprehensive, up-to-date review of the entire field. All areas of exoplanet investigation are covered, making it a unique and valuable guide for researchers in astronomy and planetary science, including those new to the field. It treats the many different techniques now available for exoplanet detection and characterisation, the broad range of underlying physics, the overlap with related topics in solar system and Earth sciences, and the concepts underpinning future developments. It emphasises the interconnection between the various fields and provides extensive references to more in-depth treatments and reviews.
An Irish astronomer and talented mathematician, Sir Robert Stawell Ball (1840–1913) was also a prolific writer of popular astronomy. As a young man, Ball conducted observations of nebulae using Lord Rosse's telescope – at the time the largest in the world. His Story of the Heavens displays the same fascination with the beauties and mysteries of the sky, providing a detailed survey of the history and contemporary situation of the solar system, and speculating about the possibility of life on other planets. Originally published in 1885, when Ball was Andrews Professor of Astronomy in the University of Dublin and Royal Astronomer of Ireland, this beautifully illustrated volume covers all eight planets, the Sun, as well as double stars, distant suns, comets, and the Milky Way. Extremely popular in its time, this book remains relevant today for its historical account of astronomy as a science.
Sir Robert Stawell Ball's Star-Land of 1889 is based on some of his Christmas Lectures at the Royal Institution during his time as royal astronomer of Ireland, a post he held from 1874 to 1892. These lectures were aimed at a young audience in order to introduce them to the subject, and fire their interest in the wonders of the universe. This volume includes lectures on the sun, the moon, the inner and giant planets, comets and shooting stars, and stars. It also contains a chapter on the observation and naming of stars. Ball was a renowned public lecturer, with commissions across Britain, Ireland and the United States, where his anecdotal and conversational style won him much popularity. The author of several frequently reprinted science books, he was knighted in 1886 and in 1892 became Lowendean professor of astronomy at Cambridge and the director of the university observatory.
When Edwin Dunkin (1821–1898) published this book in 1869, it was received with widespread acclaim by both professional astronomers and the reading public. Dunkin, a distinguished astronomer who published widely in academic journals and later served in the prestigious roles of Deputy Astronomer Royal (1881–1884) and President of the Royal Astronomical Society (1880), is still best known for this work of popular astronomy that has functioned as an indispensable tool for generations of amateurs. Chapter 1 derives from Dunkin's famous 'The Midnight Sky at London' articles, previously published in Leisure Hour, which describe the London midnight sky during each month of the year. Other chapters cover the Southern Hemisphere, the constellations, the properties of fixed stars, the solar system, and meteors and shooting stars. The volume is well illustrated with star maps and engravings. It is a classic work of popular nineteenth-century astronomical writing.