To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Some galaxy evolutionary models postulate that powerful starburst galaxies at high-z yield local massive galaxies following the effects induced by an accreting supermassive black hole (SMBH) at their centre (e.g. Di Matteo et al. 2005). However, it is not clear on which spatial and temporal scales and through which physical processes this transition takes place (see Coppin et al. 2008). Here, we investigate this evolutionary scenario by comparing star formation rates (SFRs), AGN activity and stellar masses in high-z (z ∼ 2) active systems.
Spitzer selection of high-z luminous infrared galaxies
For this work, we selected a sample of IR luminous source candidates in a ∼s20 deg2 area obtained by combining the Lockman Hole field (LH, ∼11 deg2, α = 10h 45m, δ = + 58°), and the XMM-LSS field (XMM, ∼9 deg2, α = 02h 21m, δ = −04° 30′) of the Spitzer Wide Area Infrared Extragalactic Survey (SWIRE; Lonsdale et al. 2003). Both fields benefit from multi-band ground-based optical (Ugriz) and Spitzer IR bands (seven bands from 3.6 to 160 μm). IR luminous sources, powered by star formation or AGN activity, are expected to be bright mid-infrared (MIR) sources. Powerful starburst galaxies are characterised by spectral energy distributions (SEDs) that are bright throughout the MIR to millimetre range. Luminous AGNs are bright MIR sources because their emission from AGN-heated dust peaks in the MIR. We thus selected all sources with a 24 μm flux > 400 μJy (corresponding to ≳ 5σ).
At redshifts above z ≳ 0.5 extragalactic jet sources are commonly associated with extended emission line regions (for a review see McCarthy 1993; Miley and De Breuck 2008). The most prominent emission line is the hydrogen Lyman α line, but other typical nebular emission lines have also been found. These regions are up to 100 kpc in extent, anisotropic and preferentially aligned with the radio jets (alignment effect). Their properties correlate with those of the radio jets: smaller radio jets (< 100 kpc) have more extended emission line regions with larger velocity widths (1000 km s−1) that are predominantly shock ionised, as diagnosed from their emission line ratios. Larger radio jets (> 100 kpc) have emission line regions even smaller than 100 kpc. Their turbulent velocities are typically about 500 km s−1 and the dominant excitation mechanism is photoionisation. The physical function of these emission line regions can be compared to a detector in a particle physics experiment: in both cases a beam of high-energy particles hits a target. Analysis of the interactions in the surrounding detector, or in astrophysics the emission line gas, provides information about the physical processes of interest. For the astrophysical jets, the information one would like to obtain from such analysis concerns two traditionally separate branches of astrophysics.
The considerable energy release that may be associated with the jet phenomenon is received by a large reservoir of gas surrounding the host galaxy.
Only by incorporating various forms of feedback can theories of galaxy formation reproduce the present-day luminosity function of galaxies. It has also been argued that such feedback processes might explain the counterintuitive behaviour of ‘downsizing’ witnessed since redshifts z ≈ 1 − 2. To examine this question, observations spanning 0.4 < z < 1.4 from the DEEP2/Palomar survey (Bundy et al. 2006) are compared with a suite of equivalent mock observations derived from the Millennium Simulation, populated with galaxies using the Galform code (Bower et al. 2006).
Hierarchical assembly
The mock galaxy samples are generated from the population of dark matter halos in the Millennium Simulation (Springel et al. 2005). This simulation consists of approximately 10 billion dark matter particles each of mass 8.6 × 108h−1M⊙ evolving in a cubic volume of side 500h−1 Mpc, assuming a ∧CDM cosmology.
Dark matter halo merger trees are found from this 4-volume using the methods described by Harker et al. (2006). The lowest mass halos contained in these trees, of which there are about 20 million, consist of 20 particles corresponding to a total mass of 5 × 109h−1M⊙. Such halos could contain at most 9 × 108h−1M⊙ of baryonic material, which is well below the lower limit of the stellar mass functions to be considered in this work. Therefore we do not expect the resolution of the Millennium Simulation to affect our results.
The idea that AGN activity can detectably influence the evolution of stellar populations in galaxies was advanced about 10 years ago (Silk and Rees 1998). This feedback can either manifest itself in the form of episodes of induced star formation, as originally suggested by Silk and Rees, or one could also imagine that the impressive release of energy from the AGN's jet to the interstellar medium (ISM) of its host galaxy could inhibit stellar formation. The first form is called positive feedback, while the second is often termed negative feedback. Both forms of feedback have durations of the order of a few times 107 years, i.e. the timescale of the AGN's duty cycle. This is a very short timescale in terms of galaxy evolution: thus the detection of negative feedback becomes possible by inspecting the statistical properties of colour–colour and colour–magnitude diagrams in some bands that are sensitive to recent star formation episodes. Only recently, with the massive exploitation of data from large-scale surveys such as the Sloan Digital Sky Survey, has it become possible to obtain galaxy samples large enough to check these effects (see for instance the contribution by Silverman et al. in this volume, Chapter 4).
Only more recently, however, have simulations of the jet–ISM interaction been attempted (see for instance the contributions by Bicknell et al. and Krause and Gaibler in this volume, Chapters 14 and 16).
During the past decade, convincing evidence has been accumulated concerning the effect that AGN activity has on the internal and external environment of host galaxies. At intermediate and relatively high redshifts (z-0.2–1.5) evidence for this interaction comes, for example, from the optical–radio alignment and from the observation of jet-induced star formation. In the nearby universe there is also a series of significant indications: the observation of recent episodes of star formation in otherwise old or early types of ellipticals has emerged from analyses of the SDSS. There is also more direct and circumstantial evidence from the analysis of regions such as the Minkowski object, or the distribution of star-forming regions around the nearby radio envelope of Cen A, and from the enhanced star formation seen in some satellite galaxies of active galaxies at relatively high redshift.
Parallel and somewhat independently from this more direct evidence, the study of galaxy evolution has provided the astrophysical community with challenging new questions. The availability of large-scale photometric and spectral surveys such as the 2dF and the Sloan Digital Sky Survey has made it possible to discover evidence for evolution of the stellar formation features on timescales that are very short, in cosmological terms. The paradigm thus emerging in the astrophysical community is that AGN activity could be tightly connected to these phenomena, and could be capable of affecting the evolution of stellar populations within galaxies.
Models invoking only the central AGN to resolve the cooling flow conundrum in galaxy clusters require fine-tuning of highly uncertain microscopic transport properties to distribute the thermal energy over the entire cluster cooling core. A model in which the ICM is heated instead by multiple, spatially distributed AGNs bypasses most of these difficulties (Nusser et al. 2006). The central regions of galaxy clusters are rich in spheroidal systems, all of which are thought to host black holes and could participate in the heating of the ICM via AGN activity of varying strengths. And they do. There is mounting observational evidence for multiple AGNs in cluster environments. Active AGNs drive bubbles into the ICM. We identify three distinct interactions between the bubble and the ICM: (1) Upon injection, the bubbles expand rapidly in situ to reach pressure equilibrium with their surroundings, generating shocks and waves whose dissipation is the principal source of ICM heating. (2) Once inflated, the bubbles rise buoyantly at a rate determined by balance with the viscous drag force, which itself results in some additional heating. (3) Rising bubbles expand and compress their surroundings. This process is adiabatic and does not contribute to any additional heating; rather, the increased ICM density due to compression enhances cooling. Our model sidesteps the “transport” issue by relying on the spatially distributed galaxies to heat the cluster core. We include self-regulation in our model by linking AGN activity in a galaxy to cooling characteristics of the surrounding ICM.
A fundamental issue when modeling the evolution of galaxies in a cosmological context is that the majority of the processes driving baryonic evolution (such as star formation, various feedback mechanisms, accretion onto supermassive black holes (SMBHs)) operate or originate on scales well below the resolution of any feasible simulation in a cosmic box. Moreover, these processes are highly nonlinear, poorly understood from a physical point of view, and approximated by means of simplified, often phenomenological, and thus uncertain subgrid prescriptions. Unfortunately, yet unsurprisingly, a number of studies have clearly demonstrated that the results of these models are heavily affected by different choices for such prescriptions (e.g. Benson et al. 2003; Di Matteo et al. 2005), or for parameter values (e.g. Zavala et al. 2008). It is fair to say that first principles or ab-initio models do not exist.
Standard SAMs, their successes and their failures
Extensive comparisons between different scenarios and data are generally conducted by means of semi-analytic modeling (SAMs) for baryons, often grafted onto gravity-only simulations for the dark matter (DM) evolution. By the definition of SAMs, the general behavior of the system is outlined a priori, and then translated into a set of (somewhat) physically grounded analytical recipes – suitable for numerical computation over cosmological timescales – for the processes that are thought to be more relevant to galaxy formation and evolution.
Polymath Alexander von Humboldt (1769–1859), a self-described 'scientific traveller', was one of the most respected scientists of his time. Humboldt's wanderlust led him across Europe and to South America, Mexico, the U.S. and Russia, and his voyages and observations resulted in the discovery of many species previously unknown to Europeans. Originating as lectures delivered in Berlin and Paris (1827–1828), his two-volume Cosmos: Sketch of a Physical Description of the Universe (1845–1860) represented the culmination of his lifelong interest in understanding the physical world. As Humboldt writes, 'I ever desired to discern physical phenomena in their widest mutual connection, and to comprehend Nature as a whole, animated and moved by inward forces'. Volume 2 (1848) reviews poetic descriptions of nature as well as landscape painting from antiquity through to modernity, before using the same time-span to examine a 'History of the Physical Contemplation of the Universe'.
Sir George Biddell Airy (1801–1892) was a prominent mathematician and astronomer. He was an honorary fellow of Trinity College, Cambridge, fellow of the Royal Society and Astronomer Royal from 1835 until 1881. His many achievements include important work on planetary orbits, the calculation of the mean density of the earth and the establishment of the prime meridian at Greenwich. He was also consulted by the government on a wide range of issues and projects, serving on the weights and measures commission, the tidal harbours commission and the railway gauge commission as well as acting as an advisor for the repair of Big Ben and the laying of the Atlantic cable. His autobiography, edited by his son Wilfred, comprises ten chapters and is drawn from the astronomer's own records of the scientific work he carried out at Greenwich Observatory along with his printed reports and private and business correspondence.
This three-volume series presents the ideas, models and approaches essential to understanding plasma dynamics and self-organization for researchers and graduate students in plasma physics, controlled fusion and related fields such as plasma astrophysics. Volume I develops the physical kinetics of plasma turbulence through a focus on quasi-particle models and dynamics. It discusses the essential physics concepts and theoretical methods for describing weak and strong fluid and phase space turbulence in plasma systems far from equilibrium. The book connects the traditionally 'plasma' topic of weak or wave turbulence theory to more familiar fluid turbulence theory, and extends both to the realm of collisionless phase space turbulence. This gives readers a deeper understanding of these related fields, and builds a foundation for future applications to multi-scale processes of self-organization in tokamaks and other confined plasmas. This book emphasizes the conceptual foundations and physical intuition underpinnings of plasma turbulence theory.
The Herschels in this biography are Sir William Herschel (1738–1822), his sister Caroline (1750–1848) and Sir John Herschel (1792–1871), William's son. Sir William was an astronomer and telescope-maker who discovered the planet Uranus in 1781. He was appointed 'the King's astronomer' to George III in 1782, and under his patronage built the then largest telescope in the world. Caroline Herschel worked as her brother's assistant for much of his career but was also an accomplished astronomer in her own right, discovering eight comets and producing a catalogue of nebulae. Her nephew Sir John Herschel was also a distinguished astronomer who made many observations of stars in the southern hemisphere. This book by the astronomer and writer Agnes Clerke (1842–1907), published in 1895, provides both an analysis of their work and an assessment of its contribution to later astronomical research.
Simon Newcomb (1835–1903) was an astronomer and mathematician remembered for his work in recalculating the major astronomical constants to a new international standard. He was a founding member of the American Astronomical Society and became its first president in 1899. Although Newcomb's mathematical work is well known, this autobiography, first published in 1903, focuses on his achievements and work as an astronomer. In it he provides an account of his scientific research with comments on his approach, which together with his descriptions of scientific discoveries and collaborations occurring in Washington DC show the variety of scientific research being conducted in the United States in the late nineteenth century. His detailed descriptions of how telescopes were used, together with accounts of his experience of working conditions in various observatories, provide valuable insights into astronomical research methods in the late nineteenth century.
Stars in Their Courses is an introduction, originally published in 1934, to astronomy and the wonders of the universe brought to us by the technology of the telescope. The book is illustrated with a large number of photographs, and was especially written for readers with no previous scientific knowledge.
Thomas William Webb (1807–1885) was an Oxford-educated English clergyman whose deep interest in astronomy and accompanying field observations eventually led to the publication of his Celestial Objects for Common Telescopes in 1859. An attempt 'to furnish the possessors of ordinary telescopes with plain directions for their use, and a list of objects for their advantageous employment', the book was popular with amateur stargazers for many decades to follow. Underlying Webb's celestial field guide and directions on telescope use was a deep conviction that the heavens pointed observers 'to the most impressive thoughts of the littleness of man, and of the unspeakable greatness and glory of the Creator'. A classic and well-loved work by a passionate practitioner, the monograph remains an important landmark in the history of astronomy, as well as a tool for use by amateurs and professionals alike.
Problems of Cosmogony and Stellar Dynamics is a theoretical prelude to Jeans's later and more mature work on the subject, Astronomy and Cosmogony. The impetus for publishing his theories on the behaviour of rotating masses, and on general dynamical theory, was the 1917 Adams Prize on the 'rotating and gravitating fluid mass'. Jeans won the prize with the core text of this volume. Enlarging on that work, and utilising the burgeoning results of astronomy, as well as the author's bolder theoretical conjectures, this book became a solid foundation for substantial progress in cosmology.
The complex internal structure of the Sun can now be studied in detail through helioseismology and neutrino astronomy. The VI Canary Islands Winter School of Astrophysics was dedicated to examining these powerful new techniques. Based on this meeting, seven specially written chapters by world experts renowned for their teaching skills are presented in this 1996 volume. With a clear and pedagogical style we are shown how the internal composition (density, He abundance, etc.) and dynamical structure (rotation, sub-surface velocity fields, etc.) of the Sun can be deduced through helioseismology; and how the central temperature can be inferred from measurements of the flux of solar neutrinos. This volume provides an excellent introduction for graduate students and an up-to-date overview for researchers working on the Sun, neutrino astronomy and helio- and asteroseismology.
The planets and the Sun together form a coupled system, the so-called solar system, which is located in a s piral arm of the Milky Way galaxy. The solar system has existed for 4.6 billion years. Its formation took only between 50 and 100 million years (Chapter 3). According to the nebular hypothesis, a large cloud of gas started to contract under self-gravity. Conservation of angular momentum led to a rotating disk. In the center of this disk mass concentrated into a so-called proto-Sun which grew larger and larger. After reaching a temperature of about 15 million K in the core, nuclear fusion processes started turning hydrogen into helium.
In the inner part of the disk, small planetesimals were formed, which by aggregating more mass became the terrestrial planets (Mercury, Venus, Earth, and Mars). The release of potential energy and the impact of particles produced molten spheres causing a chemical differentiation with denser material sinking to the center and with a loss of volatile components. In the outer disk, lower temperatures prevailed allowing the aggregation of volatile matter such as ices and gases. The result was several larger planets with lower densities (Jupiter, Saturn, Uranus, and Neptune). For a more detailed discussion of the formation and evolution of stars and their planets we refer to Chapter 3.