To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The study of Solar System objects was the dominant branch of Astronomy from antiquity until the nineteenth century. Analysis of planetary motion by Isaac Newton and others helped reveal the workings of the Universe. While the first astronomical uses of the telescope were primarily to study planetary bodies, improvements in telescope and detector technology in the nineteenth and early twentieth centuries brought the greatest advances in stellar and galactic astrophysics. Our understanding of the Earth and its relationship to the other planets advanced greatly during this period. The advent of the Space Age, with lunar missions and interplanetary probes, has revolutionized our understanding of our Solar System over the past forty years. Dozens of planets in orbit about stars other than our Sun have been discovered since 1995; these massive extrasolar planets have orbits quite different from the giant planets in our Solar System, and their discovery is fueling research into the process of planetary formation.
Planetary Science is now a major interdisciplinary field, combining aspects of Astronomy/Astrophysics with Geology/Geophysics, Meteorology/Atmospheric Sciences and Space Science/Plasma Physics. We are aware of more than ten thousand small bodies in orbit about the Sun and the giant planets. Many objects have been studied as individual worlds rather than merely as points of light. We now realize that the Solar System contains a more dynamic and rapidly evolving group of objects than previously imagined.
Planetary sciences is an active research field, and our knowledge of the planets and smaller bodies in the Solar System is increasing very rapidly. Thus, no compendium on this subject can be completely up to date. To give the student a flavor of this progress, we include in this appendix a selection of some of the most spectacular images sent back by NASA spacecraft that were released to the public during 2009 and early 2010. The images in this appendix are arranged by planet in order of increasing heliocentric distance; the majority of images are from Mars and the Saturn system, which are under intensive close-up study.
We close with some additional topics of interest both to general relativity, and to the program of “advanced classical mechanics”. First, because it is of the most immediate astrophysical interest, we discuss qualitatively the Kerr solution for the exterior of a spinning, spherically symmetric mass. The Kerr metric is stated, and its linearization compared to the closest electromagnetic analogue: a spinning sphere of charge. Using this comparison, we can interpret the two parameters found in the Kerr metric (when written in Boyer–Lindquist coordinates) as the mass and angular momentum (per unit mass) of the source.
The Kerr metric is nontrivial to derive using our Weyl method, so we are content to verify that it is a solution to Einstein's equation in vacuum. Some of the physical implications of the Kerr solution are available in linearized form, but the more interesting and exotic particle motions associated with the geodesics are easier to explore numerically (see for an exhaustive analytical treatment). For this reason, we include a brief discussion of numerical solutions to the geodesic ODEs that arise in the context of the Kerr space-time. In some ways, a hands-on approach to these trajectories can provide physical insight, or at the very least, predictions of observations that are interesting and accessible.
Finally, given the work we have done on variational methods and geometry, we are in good position to understand extremization in the context of physical area minimization.
We present the polarization capabilities of GRIPS (see www.gripsmission.eu), a proposed next-generation Compton-scattering and paircreation telescope.
Introduction
GRIPS, Gamma-Ray Burst Investigation via Polarimetry and Spectroscopy, had been proposed in 2007 in response to the ESA Cosmic Vision call as a new-generation Compton-and-pair telescope. Though it was not selected for further study, a variety of investigations are being performed to improve the concept and to verify the performance.
With the Compton scattering being dependent on the polarization of the incoming photons, any Compton telescope is, per se, a decent polarimeter. Beyond this, such detectors can be tailored to have a particularly high polarization sensitivity by obeying some simple design principles.
Polarization is the last property of high-energy electromagnetic radiation which has not been utilized to its full extent, and promises to uniquely determine the emission processes of a variety of astrophysical sources, among them pulsars, anomalous X-ray pulsars (AXP) and soft-gamma repeaters (SGR), or gamma-ray bursts (GRB).
GRIPS would carry two major telescopes: the gamma-ray monitor (GRM) and the X-ray monitor. The GRM is a combined Compton-scattering and pair-creation telescope for the energy range 0.2–50 MeV. It will thus follow the successful concepts of imaging high-energy photons used in COMPTEL (0.7–30 MeV) as well as EGRET (>30 MeV) and Fermi (>100 MeV) but combines them into one instrument. The following deals exclusively with the GRM concept, and its capability to measure polarization at unprecedented sensitivity.
By
M. S. Jackson, KTH, Dept. of Physics, and Oskar Klein Centre, AlbaNova University Centre, Stockholm,
M. Kiss, KTH, Dept. of Physics, and Oskar Klein Centre, AlbaNova University Centre, Stockholm
Tests were performed on each section of each PoGOLite detector in order to characterize its behaviour, as well as to choose which detectors will be used in flight and in what configuration. We present the method and results of the tests of these detectors, as well as the strategy used for placing them in the instrument.
Introduction
The Polarized Gamma-ray Observer (PoGOLite) is a balloon-borne, Compton-based polarimeter, with an energy range of 25–80 keV. In the pathfinder instrument to be flown in August 2010, the detector system will employ 61 phoswich detector cells (PDC) and 30 side anticoincidence shield (SAS) detectors situated in an unbroken ring around the PDCs. The full size PoGOLite instrument will contain 217 PDCs. The previous tests and simulations of the detector system are explored in more detail in.
The 61 PDC and 30 SAS detectors must be arranged in a way which optimizes the detection efficiency of valid events, while also allowing for the virtually complete rejection of background. For this purpose, the light yield of each component of each PDC and SAS unit was measured, using radioactive sources with particles and energies to which the detector materials are most sensitive. The light yield of a detector indicates its efficiency and is given by the peak channel number in the spectrum.
The ultimate goal of the next two chapters is to connect Einstein's equation to relativistic field theory. The original motivation for this shift away from geometry, and toward the machinery of field theory, was (arguably) the difficulty of unifying the four forces of nature when one of these is not a force. There was a language for relativistic fields, and a way to think about quantization in the context of that language. If gravity was to be quantized in a manner similar to E&M, it needed a formulation more like E&M's.
We will begin by developing the Lagrangian description for simple scalar fields, this is a “continuum”-ization of Newton's second law, and leads immediately to the wave equation. Once we have the wave equation, appropriate to, for example, longitudinal density perturbations in a material, we can generalize to the wave equation of empty space, which, like materials, has a natural speed. This gives us the massless Klein–Gordon scalar field theory. We will explore some of the Lagrangian and Hamiltonian ideas applied to fields, and make the connection between these and natural continuum forms of familiar (point) classical mechanics. In the next chapter, we will extend to vector fields, discuss electricity and magnetism, and move on to develop the simplest second-rank symmetric tensor field theory. This is, almost uniquely, Einstein's general relativity, and the field of interest is the metric of a (pseudo-)Riemannian space-time.
Accretion onto black holes often proceeds via an accretion disc or a temporary disc-like pattern. Variability features, observed in the light curves of such objects, and theoretical models of accretion flows suggest that accretion discs are inhomogeneous and nonaxisymmetric. Fast orbital motion of the individual clumps can modulate the observed signal. If the emission from these clumps is partially polarized, which is probably the case, then rapid polarization changes of the observed signal are expected as a result of general relativity (GR) effects.
In this contribution we will summarize the expected effects in terms of the model of bright orbiting spots. As the signal from accreting black holes peaks in X-rays, the polarimetry in this spectral band will be particularly useful to examine the strong-gravity effects that should modulate the signal originating near the horizon. We will mention similarities as well as differences between the manifestation of GR polarization change in X-rays and in other spectral bands, such as the infrared region, where the polarization measurements of the radiation flares from the immediate vicinity of the horizon are currently available and can be used to probe the Sagittarius A* supermassive black hole in the Galactic Centre.
Introduction
Polarization of light originating from different regions of a black hole accretion disc and detected by a distant observer is influenced by strong gravitational field near a central black hole.
from
Part II
-
Polarized emission in X-ray sources
By
S. Bianchi, Università degli Studi Roma Tre, Italy,
G. Matt, Università degli Studi Roma Tre, Italy,
F. Tamborra, Università degli Studi Roma Tre, Italy,
M. Chiaberge, Space Telescope Science Institute, USA,
M. Guainazzi, XMM-Newton SOC, ESAC, ESA, Spain,
A. Marinucci, Università degli Studi Roma Tre, Italy
The soft X-ray emission in obscured active galactic nuclei (AGN) is dominated by emission lines, produced in a gas photoionized by the nuclear continuum and probably spatially coincident with the optical narrow-line region (NLR). However, a fraction of the observed soft X-ray flux appears like a featureless power law continuum. If the continuum underlying the soft X-ray emission lines is due to Thomson scattering of the nuclear radiation, it should be very highly polarized. We calculated the expected amount of polarization assuming a simple conical geometry for the NLR, combining these results with the observed fraction of the reflected continuum in bright obscured AGN.
Introduction
The presence of a ‘soft excess’, i.e. soft X-ray emission above the extrapolation of the absorbed nuclear emission, is very common in low-resolution spectra of nearby X-ray obscured active galactic nuclei (AGN). It is generally very difficult to discriminate between thermal emission, as expected by gas heated by shocks induced by AGN outflows or episodes of intense star formation, and emission from a gas photoionized by the AGN primary emission. However, the high energy and spatial resolution of XMM-Newton and Chandra have allowed us to make important progress in the last few years.
The photoionization signatures
The high-resolution spectra of the brightest obscured AGN, made available by the gratings aboard Chandra and XMM-Newton, revealed that the ‘soft excess’ observed in CCD spectra was due to the blending of strong emission lines, mainly from He- and H-like transitions of light metals and L transitions of Fe (see Figure 19.1, e.g).
The physical processes postulated to explain the high-energy emission mechanisms of compact astrophysical sources are in many cases predicted to result in polarized soft gamma-rays. The polarisation arises naturally for synchrotron radiation in large-scale ordered magnetic fields and for photons propagating through a strong magnetic field. Polarization can also result from anisotropic Compton scattering. In all cases, the orientation of the polarization plane is a powerful probe of the physical environment around compact astrophysical sources. Observations with PoGOLite will help resolve the source geometry for many classes of astrophysical objects. PoGOLite applies well-type phoswich technology to polarization measurements in the 25–80 keV energy range. The instrument uses Compton scattering and photoelectric absorption in an array of detector cells made of plastic and BGO scintillators, surrounded by a BGO side anticoincidence shield. A pathfinder balloon flight is scheduled for 2010 from the Esrange facility in the north of Sweden with the Crab and Cygnus X-1 as the main observational targets.
Introduction
Despite the wealth of sources accessible to polarization measurements and the importance of these measurements, there has been a paucity of missions with dedicated instrumentation. The most recent was a measurement of the Crab at 2.6 keV and 5.2 keV by an experiment on the OSO-8 satellite in 1976. Measurements using instruments on-board the INTEGRAL satellite have reinvigorated the field of late. At soft gamma-ray energies, nonthermal processes are likely to produce high degrees of polarization.
We present new calculations of X-ray polarization from black hole accretion disks in the thermally dominated state, using a Monte-Carlo ray-tracing code in full general relativity. In contrast to many previously published studies, our approach allows us to include returning radiation that is deflected by the strong-field gravity of the BH and scatters off the disk before reaching a distant observer. Although carrying a relatively small fraction of the total observed flux, the scattered radiation tends to be highly polarized and in a direction perpendicular to the direct radiation. We show how these new features of the polarization spectra may be developed into a powerful tool for measuring black hole spin and probing the gas flow in the innermost disk.
Introduction
A recent flurry of new mission proposals has renewed interest in X-ray polarization from a variety of astrophysical sources, hopefully marking the “coming of age of X-ray polarimetry” in the very near future. The Gravity and Extreme Magnetism SMEX (GEMS) mission, for example, should be able to detect a degree of polarization δ < 1% for a flux of a few mCrab (e.g. and these proceedings). A similar detector for the International X-ray Observatory (IXO) could achieve sensitivity roughly 10× greater (δ <0.1%, Alessandro Brez in these proceedings). In this talk, based on our recent paper, we focus on the polarization signal from accreting stellar-mass black holes (BHs) in the thermal state, which are characterized by a broad-band spectrum peaking around 1 keV.
We explore expected polarization signatures in thermal X-ray emission from magnetized neutron stars. We study the interplay between the photospheres of ordinary and extraordinary modes, and the vacuum resonance. We consider propagation in the neutron star magnetosphere. We identify distinct regimes of magnetic field strengths, and summarize their polarization signatures.
Introduction
We are discussing the state of the art of X-ray polarization detection techniques in this conference, so that it is important to remind ourselves of the expected X-ray polarization properties of various astrophysical objects. In this paper, we give a brief overview of the expected X-ray polarization signatures of magnetic neutron stars found in diverse situations, e.g. in accretion-powered pulsars, low-mass X-ray binaries (LMXBs), recycled pulsars, isolated neutron stars and finally the fascinating magnetars. We concentrate here only on some aspects of the basic physics of radiation propagation around magnetized neutron stars which lead to some basic, expected polarization features in the X-rays which we consider relatively robust. Accordingly, our discussion here is qualitative. Quantitative aspects of a few of these features have been described by other participants of the conference, and detailed calculations on some other aspects will be reported elsewhere.
The X-ray emission we are concerned with here is basically thermal emission from the surface of the neutron star, powered by accretion or otherwise. This radiation propagates through the neutron-star atmosphere, then through the accretion columns over the magnetic poles of the neutron star if it is an accreting one, and finally through the neutron-star magnetosphere.
We have, so far, studied classical mechanics from a variety of different points of view. In particular, the notion of length extremization, and its mathematical formulation as the extremum of a particular action, were extensible to define the dynamics of special relativity. As we went along, we developed notation sufficient to discuss the generalized motion of particles in an arbitrary metric setting. Most of our work on dynamics has been done in an explicitly “flat” space, or in the case of special relativity, space-time. But, we have pushed the geometry as far as we can without any fundamentally new ideas. Now it is time to turn our attention to the characterization of geometry that will allow us to define “flat” versus “curved” space-times. In order to do this, we need less familiar machinery, and will develop that machinery as we push on toward the ultimate goal: to find equations governing the generation of curvature from a mass distribution that mimic, in some limit, the Newtonian force of gravity.
Remember that it is gravity that is the target here. We have seen that the classical gravitational force violates special relativity, and that a modified theory that shares some common traits with electricity and magnetism would fix this flaw. For reasons that should become apparent as we forge ahead, such a modified theory cannot capture all of the observed gravitational phenomena, and, as it turns out, a much larger shift in thinking is necessary.
Advances in X-ray astronomy over the almost five decades since the first rockets were launched have been impressive in the domains of imaging, spectroscopy and timing. On the contrary, polarimetry has not progressed much since the historic results of the Columbia team headed by Bob Novick with rockets and with the OSO-8 satellite. The introduction, since Einstein, of X-ray telescopes and imaging detectors produced a dramatic jump in the sensitivity of X-ray missions. Polarimetry based on the conventional techniques of Bragg diffraction and Compton scattering has suffered from the increased mismatching in terms of sensitivity which resulted in the preclusion of the whole extragalactic sky. Moreover the shift from satellites stabilized on one axis to those stabilized on three axes made cumbersome the hosting of polarimeters, which needed the rotation of the whole instrument, in the focal plane of telescopes. As a consequence no polarimeter was included in the final design of Einstein, Chandra and XMM-Newton.
The advent of a new generation of detectors, to be combined with large area X-ray telescopes, has renewed interest in X-ray polarimetry, as demonstrated by the several polarimetric missions recently proposed. One of them, GEMS, has been recently selected by NASA within the SMEX program, with a launch due in 2014. There are discussions in Italy about the possibility of a national X-ray mission including polarimetry, to be launched in the same time frame.
Young energetic pulsars are capable of accelerating electrons to extremely high energies, which subsequently become visible in the X-ray and low-energy γ-ray domain through synchrotron radiation. The recent polarization measurement of the Crab γ-ray emission provides a powerful investigative tool for the physical conditions and geometry of the magnetic field close to the pulsar. The Crab nebula has been found to emit linearly polarized γ-rays during the off-pulse phase with an efficiency close to the maximum allowable by physics. The close alignment between the electric vector and the spin axis of the neutron star places severe boundaries on theoretical models. The off-pulse γ-radiation is constrained to originate somewhere close to the pulsar, but outside the light cylinder. Three contenders are identified: the striped-wind model; radiation from within the inner jet; Doppler-boosted radiation from knot-like features close to the pulsar.
Introduction
Observations in the γ-ray regime allow us to scrutinize some of the most energetic emission processes associated with cosmic sources. Unlike other wave bands that mainly show emission due to thermal reprocessing within hot gases, the majority of γ-ray emission is decidedly non-thermal in nature and is generally produced directly by electrons and other elementary particles in magnetic fields. The electrons which produce the γ-rays are extremely energetic and often at the upper limit of the capability of the accelerator that produces them.
We present our results of Monte-Carlo simulations of polarized Compton X-rays from magnetic cataclysmic variables, with realistic density, temperature and velocity structures in the accretion flow. Our study has shown that the X-ray linear polarization may reach about 8% for systems with high accretion rates viewed at a high viewing inclination angle. This value is roughly twice the maximum value obtained by previous studies which assumed a cold, static emission region with a uniform density. We also investigate the X-ray polarization properties of ultra-compact double-degenerate binaries for the unipolar-inductor and direct-impact accretor models. Our study has shown negligible X-ray polarization for the unipolar-induction model. However, the direct-impact accretor model may give X-ray polarization levels similar to that predicted for the magnetic cataclysmic variables.
Introduction
Magnetic cataclysmic variables (mCVs) and Ultra-compact double degenerate binaries (UCDs) are potential X-ray polarization sources. The mCVs contain a magnetic white dwarf accreting material from a low-mass, Roche-lobe filling companion star. There are two major types: (i) the AM Herculis binaries (AM Hers, also known as polars) and (ii) the intermediate polars (IPs) (see). In AM Hers, the white-dwarf magnetic field (B ∼ 107 −108 G) is strong enough to lock the whole system into synchronous rotation. It also prohibits the formation of an accretion disk, and the accretion flow is channelled by the magnetic field into the magnetic polar regions of the white dwarf.
Gamma-ray bursts and their afterglows are thought to be produced by an ultrarelativistic jet. One of the most important open questions is the out-flow composition: the energy may be carried out from the central source either as kinetic energy (of baryons and/or pairs), or in electromagnetic form (Poynting flux). While the total observable flux may be indistinguishable in both cases, its polarization properties are expected to differ markedly. The later time evolution of afterglow polarization is also a powerful diagnostic of the jet geometry. Again, with subtle and hardly detectable differences in the output flux, we have distinct polarization predictions.
Introduction
Polarimetry is a powerful diagnostic tool to study spatially unresolved sources at cosmological distances, such as gamma-ray burst (GRB) afterglows. Radiation mechanisms that produce similar spectra can be disentangled by means of their polarization signatures. Also, polarization provides unique insights into the geometry of the source, which remains hidden in the integrated light.
Historically, essentially all interpretative studies about GRB afterglow polarimetry have been based on the cosmological fireball model, which we will also use as a reference for our discussion. Afterglow polarization studies have indeed the advantage that different models are often almost indistinguishable in terms of radiation output in the optical, but produce markedly distinct predictions about polarization.
In this proceeding, we will briefly review in Section 32.2 what we have derived by optical afterglow polarimetric observations and discuss the most recent development in the field in Section 32.3.