To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
“A Knowledge of the construction of the heavens,” Herschel wrote in 1811, “has always been the ultimate object of my observations.” The “Construction of the Heavens”! A phrase of profound and novel import, for the invention of which he was ridiculed by Brougham in the Edinburgh Review; yet expressing, as it had never been expressed before, the essential idea of sidereal astronomy. Speculation there had been as to the manner in which the stars were grouped together; but the touchstone of reality had yet to be applied to them. This unattempted, and all but impossible enterprise Herschel deliberately undertook. It presented itself spontaneously to his mind-as worth the expenditure of a life's labour; and he spared nothing in the disbursement. The hope of its accomplishment inspired his early exertions, carried him through innumerable difficulties, lent him audacity, fortified him in perseverance. For this,
“He left behind the painted buoy
That tosses at the harbour's mouth,”
and burst his way into an unnavigated ocean.
Herschel has had very few equals in his strength of controlled imagination. He held the balance, even to a nicety, between the real and the ideal. Meditation served in him to prescribe and guide experience; experience to ripen the fruit of meditation.
Could the whole of Sir John Herschel's astronomical career be obliterated, and the whole of his contributions to pure mathematics be forgotten, he would still merit celebrity as a physicist. Experimental optics, above all, engaged his attention. “Light,” he himself said, “was his first love,” and he was never wholly forgetful of it. In 1830 he described himself as “forcibly drawn aside from his optical studies” by the claims of nebulae and double stars. How strong he felt those claims to be, can best be understood by considering the firmness with which he averted his mind, out of regard to them, from the intricate and bewitching subject of his early devotion.
“In understand from Peacock,” Dr. Whewell wrote to him, June 19, 1818, “that you are untwisting light like whipcord, examining every ray that passes within half a mile, and putting the awful question, ‘Polarised, or not polarised?’ to thousands that were never before suspected of any intention but that of moving in a straight line.” These interrogatories brought out a remarkable diversity in the action upon light of quartz, and other similar substances, corresponding with the two different modes of crystallisation belonging to each of them. Here, in Lord Kelvin's phrase, is “one of the most notable meeting-places between natural history and natural philosophy.”
Double stars were, when Herschel began to pay attention to them, regarded as mere chance productions. No suspicion was entertained that a real, physical bond united their components. Only the Jesuit astronomer, Christian Mayer, maintained that bright stars were often attended by faint ones; and since his observations were not such as to inspire much confidence, his assertions counted for very little. “In my opinion,” Herschel wrote in 1782, “it is much too soon to form any theories of small stars revolving round large ones.” He, indeed, probably even then, suspected that close equal stars formed genuine couples; but he waited, if so, for evidence of the connection. The chief subject of his experiments on parallax was Epsilon Boötis, an exquisitely tinted, unequal pair. But he soon became aware that either stellar parallax was elusively small, or that he was on the wrong track for detecting it. And, since his favourite stars have proved to be a binary combination, it was, of course, drawing water in a sieve to make one the test of perspective shifting in the other.
The number of Herschel's double stars alone showed them to be integral parts of an express design. Such a crop of casualties was out of all reasonable question.
The powers of the telescope were so unexpectedly increased, that they may almost be said to have been discovered by William Herschel. No one before him had considered the advantages of large apertures. No one had seemed to remember that the primary function of an instrument designed to aid vision is to collect light. The elementary principle of space-penetration had not been adverted to. It devolved upon him to point out that the distances of similar objects are exactly proportional to the size of the telescopes barely sufficing to show them. The reason is obvious. Compare, for instance, a one-inch telescope with the naked eye. The telescope brings to a focus twenty-five times as much light as can enter the pupil, taken at one-fifth of an inch in diameter; therefore it will render visible a star twenty-five times fainter than the smallest seen without its help; or—what comes to the same thing—an intrinsically equal star at a five-fold distance. A one-inch glass hence actually quintuples the diameter of the visible universe, and gives access to seventy-five times the volume of space ranged through by the unassisted eye.
This simple law Herschel made the foundation-stone of his sidereal edifice. He was the first to notice it, because he was the first practically to concern himself with the star-depths.
“The little boy is entertaining, comical, and promising,” Dr. Burney wrote after his visit to Slough in 1797. John Frederick William Herschel was then five years old, having been born “within the shadow of the great telescope” March 7, 1792. He was an industrious little fellow, especially in doing mischief. “When one day I was sitting beside him,” his aunt relates, “listening to his prattle, my attention was drawn by his hammering to see what he might be about, and I found that it was the continuation of many days' labour, and that the ground about the corner of the house was undermined, the corner-stone entirely away, and he was hard at work going on with the next. I gave the alarm, and old John Wiltshire, a favourite carpenter, came running, crying out, ‘God bless the boy, if he is not going to pull the house down!’” And she wrote to him at Feldhausen; “I see you now in idea, running about in petticoats among your father's carpenters, working with little tools of your own, and John Wiltshire crying out, ‘Dang the boy, if he can't drive in a nail as well as I can!’”
“John and I,” she told his wife, “were the most affectionate friends, and many a half or whole holiday spent with me was dedicated to making experiments in chemistry, in which generally all boxes, tops of tea-canisters, pepper-boxes, teacups, etc., served for the necessary vessels, and the sand-tub furnished the matter to be analysed.