To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
(652.) In the foregoing chapter we have sufficiently explained the action of the orthogonal component of the disturbing force, and traced it to its results in a continual displacement of the plane of the disturbed orbit, in virtue of which the nodes of that plane alternately advance and recede upon the plane of the disturbing body's orbit, with a general preponderance on the side of advance, so as after the lapse of a long period to cause the nodes to make a complete revolution and come round to their former situation. At the same time the inclination of the plane of the disturbed motion continually changes, alternately increasing and diminishing; the increase and diminution however compensating each other, nearly in single revolutions of the disturbed and disturbing bodies, more exactly in many, and with perfect accuracy in long periods, such as those of a complete revolution of the nodes and apsides. In the present and following chapters we shall endeavour to trace the effects of the other components of the disturbing force,—those which act in the plane (for the time being) of the disturbed orbit, and which tend to derange the elliptic form of the orbit, and the laws of elliptic motion in that plane. The small inclination, generally speaking, of the orbits of the planets and satellites to each other, permits us to separate these effects in theory one from the other, and thereby greatly to simplify their consideration. Accordingly, in what follows, we shall throughout neglect the mutual inclination of the orbits of the disturbed and disturbing bodies, and regard all the forces as acting and all the motions as performed in one plane.
(906). Time, like distance, may be measured by comparison with standards of any length, and all that is requisite for ascertaining correctly the length of any interval, is to be able to apply the standard to the interval throughout its whole extent, without overlapping on the one hand, or leaving unmeasured vacancies on the other; to determine, without the possible error of a unit, the number of integer standards which the interval admits of being interposed between its beginning and end; and to estimate precisely the fraction, over and above an integer, which remains when all the possible integers are subtracted.
(907). But though all standard units of time are equally possible, theoretically speaking, yet all are not, practically, equally convenient. The solar day is a natural interval which the wants and occupations of man in every state of society force upon him, and compel him to adopt as his fundamental unit of time. Its length as estimated from the departure of the sun from a given meridian, and its next return to the same, is subject, it is true, to an annual fluctuation in excess and defect of its mean value, amounting at its maximum to full half a minute. But except for astronomical purposes, this is too small a change to interfere in the slightest degree with its use, or to attract any attention, and the tacit substitution of its mean for its true (or variable) value may be considered as having been made from the earliest ages, by the ignorance of mankind that any such fluctuation existed.
(554.) The extraordinary aspect of comets, their rapid and seemingly irregular motions, the unexpected manner in which they often burst upon us, and the imposing magnitudes which they occasionally assume, have in all ages rendered them objects of astonishment, not unmixed with superstitious dread to the uninstructed, and an enigma to those most conversant with the wonders of creation and the operations of natural causes. Even now, that we have ceased to regard their movements as irregular, or as governed by other laws than those which retain the planets in their orbits, their intimate nature, and the offices they perform in the economy of our system, are as much unknown as ever. No distinct and satisfactory account has yet been rendered of those immensely voluminous appendages which they bear about with them, and which are known by the name of their tails, (though improperly, since they often precede them in their motions,) any more than of several other singularities which they present.
(555.) The number of comets which have been astronomically observed, or of which notices have been recorded in history, is very great, amounting to several hundreds; and when we consider that in the earlier ages of astronomy, and indeed in more recent times, before the invention of the telescope, only large and conspicuous ones were noticed; and that, since due attention has been paid to the subject, scarcely a year has passed without the observation of one or two of these bodies, and that sometimes two and even three have appeared at once; it will be easily supposed that their actual number must be at least many thousands.
(81.) Several of the terms in use among astronomers have been explained in the preceding chapter, and others used anticipatively. But the technical language of every subject requires to be formally stated, both for consistency of usage and definiteness of conception. We shall therefore proceed, in the first place, to define a number of terms in perpetual use, having relation to the globe of the earth and the celestial sphere.
(82.) Definition 1. The axis of the earth is that diameter about which it revolves, with a uniform motion, from west to east; performing one revolution in the interval which elapses between any star leaving a certain point in the heavens, and returning to the same point again.
(83.) Def. 2. The poles of the earth are the points where its axis meets its surface. The North Pole is that nearest to Europe; the South Pole that most remote from it.
(84.) Def. 3. The earth's equator is a great circle on its surface, equidistant from its poles, dividing it into two hemispheres—a northern and a southern; in the midst of which are situated the respective poles of the earth of those names. The plane of the equator is, therefore, a plane perpendicular to the earth's axis, and passing through its centre.
(85.) Def. 4. The terrestrial meridian of a station on the earth's surface, is a great circle of the globe passing through both poles and through the plane. The plane of the meridian is the plane in which that circle lies.
(86.) Def. 5. The sensible and the rational horizon of any station have been already defined in art. 74.
(527.) In the annual circuit of the earth about the sun, it is constantly attended by its satellite, the moon, which revolves round it, or rather both round their common center of gravity; while this center, strictly speaking, and not either of the two bodies thus connected, moves in an elliptic orbit, undisturbed by their mutual action, just as the center of gravity of a large and small stone tied together and flung into the air describes a parabola as if it were a real material substance under the earth's attraction, while the stones circulate round it or round each other, as we choose to conceive the matter.
(528.) If we trace, therefore, the real curve actually described by either the moon's or the earth's centers, in virtue of this compound motion, it will appear to be, not an exact ellipse, but an undulated curve, like that represented in the figure to article 324., only that the number of undulations in a whole revolution is but 13, and their actual deviation from the general ellipse, which serves them as a central line, is comparatively very much smaller—so much so, indeed, that every part of the curve described by either the earth or moon is concave towards the sun. The excursions of the earth on either side of the ellipse, indeed, are so very small as to be hardly appretiable. In fact, the center of gravity of the earth and moon lies always within the surface of the earth, so that the monthly orbit described by the earth's center about the common center of gravity is comprehended within a space less than the size of the earth itself.
In descending to the lower strata of the atmosphere, the reader should be informed that we here restrict the term to the portion of ambient air next the Earth, which receives vapours and exhalations, and increasingly refracts the rays of light. Ptolemy had already remarked that the light of the stars underwent a change of direction in the course of passing through this terrestrial envelope ; and every observer is aware of its darkening effect, especially under high magnifying power. It therefore follows, that the pervading consequence of angular altitude is a paramount condition to be considered before the amateur expends much time upon objects near the horizon, wherever he may happen to be located. On this account the diatribe was uttered against low stars (see ante, page 46) ; though perhaps an occasional dip among the remote regions of the South may hereafter yield comparisons in aid of further investigations of the phenomena—visible and invisible—of vapours.
A conviction of this will very soon come home to the intelligent observer, who will shape a course accordingly, trimming agreeably to his means and intentions ; and his judgment must guide him in selecting objects for a systematic attack. Not even will a tropical climate free the spectator from these tremulous deceptions. On the contrary, the absence of aqueous vapour may be perceived by anybody to diminish the apparent steadiness of objects, in proportion to the amount of heat and distance from the eye.
(205.) Geography is not only the most important of the practical branches of knowledge to which astronomy is applied, but it is also, theoretically speaking, an essential part of the latter science. The earth being the general station from which we view the heavens, a knowledge of the local situation of particular stations on its surface is of great consequence, when we come to inquire the distances of the nearer heavenly bodies from us, as concluded from observations of their parallax as well as on all other occasions, where a difference of locality can be supposed to influence astronomical results. We propose, therefore, in this chapter, to explain the principles, by which astronomical observation is applied to geographical determinations, and to give at the same time an outline of geography so far as it is to be considered a part of astronomy.
(206.) Geography, as the word imports, is a delineation or description of the earth. In its widest sense, this comprehends not only the delineation of the form of its continents and seas, its rivers and mountains, but their physical condition, climates, and products, and their appropriation by communities of men. With physical and political geography, however, we have no concern here.
(602.) In the progress of this work, we have more than once called the reader's attention to the existence of inequalities in the lunar and planetary motions not included in the expression of Kepler's laws, but in some sort supplementary to them, and of an order so far subordinate to those leading features of the celestial movements, as to require, for their detection, nicer observations, and longer-continued comparison between facts and theories, than suffice for the establishment and verification of the elliptic theory. These inequalities are known, in physical astronomy, by the name of perturbations. They arise, in the case of the primary planets, from the mutual gravitations of these planets towards each other, which derange their elliptic motions round the sun; and in that of the secondaries, partly from the mutual gravitation of the secondaries of the same system similarly deranging their elliptic motions round their common primary, and partly from the unequal attraction of the sun and planets on them and on their primary. These perturbations, although small, and, in most instances, insensible in short intervals of time, yet, when accumulated, as some of them may become, in the lapse of ages, alter very greatly the original elliptic relations, so as to render the same elements of the planetary orbits, which at one epoch represented perfectly well their movements, inadequate and unsatisfactory after long intervals of time.
The work here offered to the Public is based upon and may be considered as an extension, and, it is hoped, an improvement of a treatise on the same subject, forming Part 43. of the Cabinet Cyclopaedia, published in the year 1833. Its object and general character are sufficiently stated in the introductory chapter of that volume, here reprinted with little alteration; but an opportunity having been afforded me by the Proprietors, preparatory to its re-appearance in a form of more pretension, I have gladly availed myself of it, not only to correct some errors which, to my regret, subsisted in the former volume, but to remodel it altogether (though in complete accordance with its original design as a work of explanation); to introduce much new matter in the earlier portions of it; to re-write, upon a far more matured and comprehensive plan, the part relating to the lunar and planetary perturbations, and to bring the subjects of sidereal and nebular astronomy to the level of the present state of our knowledge in those departments.
The chief novelty in the volume, as it now stands, will be found in the manner in which the subject of Perturbations is treated. It is not — it cannot be made elementary, in the sense in which that word is understood in these days of light reading.
(864.) When we cast our eyes over the concave of the heavens in a clear night, we do not fail to observe that here and there are groups of stars which seem to be compressed together in a more condensed manner than in the neighbouring parts, forming bright patches and clusters, which attract attention, as if they were there brought together by some general cause other than casual distribution. There is a group, called the Pleiades, in which six or seven stars may be noticed, if the eye be directed full upon it; and many more if the eye be turned carelessly aside, while the attention is kept directed upon the group. Telescopes show fifty or sixty large stars thus crowded together in a very moderate space, comparatively insulated from the rest of the heavens. The constellation called Coma Berenices is another such group, more diffused, and consisting on the whole of larger stars.
(865.) In the constellation Cancer, there is a somewhat similar, but less definite, luminous spot, called Præsepe, or the bee-hive, which a very moderate telescope,—an ordinary night-glass for instance,—resolves entirely into stars. In the sword-handle of Perseus, also, is another such spot, crowded with stars, which requires rather a better telescope to resolve into individuals separated from each other. These are called clusters of stars; and, whatever be their nature, it is certain that other laws of aggregation subsist in these spots, than those which have determined the scattering of stars over the general surface of the sky. This conclusion is still more strongly pressed upon us, when we come to bring very powerful telescopes to bear on these and similar spots.
(777.) Besides the bodies we have described in the foregoing chapters, the heavens present us with an innumerable multitude of other objects, which are called generally by the name of stars. Though comprehending individuals differing from each other, not merely in brightness, but in many other essential points, they all agree in one attribute, — a high degree of permanence as to apparent relative situation. This has procured them the title of “fixed stars;” an expression which is to be understood in a comparative and not an absolute sense, it being certain that many, and probable that all, are in a state of motion, although too slow to be perceptible unless by means of very delicate observations, continued during a long series of years.
(778.) Astronomers are in the habit of distinguishing the stars into classes, according to their apparent brightness. These are termed magnitudes. The brightest stars are said to be of the first magnitude; those which fall so far short of the first degree of brightness as to make a strongly marked distinction are classed in the second; and so on down to the sixth or seventh, which comprise the smallest stars visible to the naked eye, in the clearest and darkest night.