To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this invited review I discuss the calibration and applications of the period–luminosity relation of classical Cepheid and RR Lyrae stars. After a brief introduction, starting with results from Hipparcos and discussing some post-Hipparcos era developments, I focus on recent results using Gaia Data Release 3 data. I present an overview of the most recent period–luminosity relations, a discussion and some new results on Cepheids in open clusters. I also discuss the effect of reddening and that the use of Wesenheit indices is actually an oversimplification to dealing with the problem of reddening.
Pulsating variable δ Scuti stars are intermediate-mass stars with masses in the range of 1–3 δ and spectral types between A2 and F2. They can be found at the intersection of the Cepheid instability strip with the main sequence. They can be used as astrophysical laboratories to test theories of stellar evolution and pulsation. In this contribution, we investigate the observed period–colour and amplitude–colour (PCAC) relations at maximum/mean/minimum light of Galactic bulge and Large Magellanic Cloud δ Scuti stars for the first time and test the hydrogen ionization front (HIF)-photosphere interaction theory using the mesa-rsp code. The PCAC relations, as a function of pulsation phase, are crucial probes of the structure of the outer stellar envelope and provide insight into the physics of stellar pulsation and evolution. The observed behaviour of the δ Scuti PCAC relations is consistent with the theory of the interaction between the HIF and the stellar photosphere.
Old stellar populations in our Galaxy provide fossil records of the metal enrichment in the first few billion years of the cosmic history. Growing elemental abundance data of individual stars combined with stellar ages and kinematics allow us to make constraints on characteristic properties of the metal-enrichment sources in the early Universe, such as the first stars. In order to interpret observed chemical abundances in the oldest stellar populations in terms of metal-enrichment sources, stellar and supernova yield models are crucial. In this article, we review how we can interpret observed chemical abundances in old stars in terms of the nature of metal enrichment sources. We discuss the limitations and the prospects of empirically constraining supernova yield models based on a large sample of extremely metal-poor stars. At the same time, we emphasize the importance of hunting old stars beyond the Solar neighborhood, which can be achieved with the next-generation multi-object spectrographs at large telescopes.
LLAMA (Large Latin America Millimeter/submillimeter Array) is a new radio observatory that is being constructed in a collaboration between Argentina and Brazil. It will consist of a 12 meters diameter antenna that is being installed in Alto Chorrillos at 4850 m of altitude, in the Salta province of Argentina. Alto Chorrillos is a high-quality astronomical site similar to Chajnantor (Chile), where ALMA observatory operates. When completed, LLAMA will allow line, continuum and linear polarization observations between 35 and 700 GHz, approximately. For the first light, LLAMA will be equipped with ALMA-like receivers at bands 5 (163 - 211 GHz), 6 (211 - 275 GHz) and 9 (602 - 720 GHz). LLAMA is being planned to be a versatile astronomical facility that will serve the scientific community for the exploration of scientific topics as diverse as the molecular evolution of the Universe, black holes and their accretion disks, astrophysical jets, stellar formation and evolution, the structure of our galaxy and the Sun, planetary atmospheres and extragalactic astronomy. In this work, I will present the LLAMA project and the perspectives for this new astronomical facility in the context of the investigation of galactic and extragalactic masers.
We have made a lot of progress in the study of the MW. In spite of this, much of our Galaxy remains unknown, and amazing breakthroughs await to be made in the exploration of the far side of the Galaxy. Focussing on the Galactic extinction horizon problem with current surveys like the Two Micron All-Sky Survey (2MASS) and the Vista Variables in the Via Lactea Survey (VVV) and its extension VVVX, the extinction horizon is a fundamental difficulty, and it is my intention here to reveal how profound is our ignorance, and also to try to suggest ways for improvement with future near-IR Galactic surveys.
We compare published solutions for the rotation angle W(t) which describes the location of the prime meridian of Mars with respect to the ICRF equator in IAU recommendations. If the model for W includes a very long period term, we transform it into a quadratic polynomial with updated epoch value and rate, resulting in a difference in the mean epoch value up to 200 km. The mean and true epoch rotation angles are about 800 mas (13 m) apart in J2000 and should not be confused with each other in order to accurately locate the prime meridian. We identify two groups of radio-science solutions for W, which can be distinguished by the prime meridian location they used as a priori that differ from each other by about 100 m at J2000.
We started high-cadence monitoring observations of 6.7 GHz methanol masers from Dec. 2012 using Hitachi 32-m radio telescope (Yonekura et al.(2016). Observations have been conducted basically every day. On average, 13 hours of observations have been made per day, amounting to 4000–5000 hours per year. The cadence varies by sources: one observation in 1–50 days. In addition to already known 29 sources (Tanabe et al. 2023 and references therein), we have newly identified ∼20 sources with periodic flux variability. We have also detected 5 sources with sudden flux rises in 2019–2022, including G358.93–0.03 which was confirmed to be associated with the accretion burst.
While the direct detection of the dark-matter particle remains very challenging, the physical properties of dark matter could potentially be constrained indirectly – by comparing the population characteristics of substructures in real galaxies with predictions from the phenomenological dark-matter models, such as cold, warm or self-interacting dark matter. Whereas these models are practically indistinguishable with respect to the expected abundance and statistical properties of massive galactic substructures, the critical difference lies in the low-mass regime ≲ 108M⊙. Galaxy-galaxy strong gravitational lensing provides a unique opportunity to search for gravitational signatures of such low-mass substructures in galaxies acting as a strong gravitational lens on a more distant background galaxy, serendipitously located along the same line of sight. In [Bayer et∼al.(2023)Bayer, Chatterjee, Koopmans, Vegetti, McKean, Treu, Fassnacht, and Glazebrook, Bayer et∼al.(2023)Bayer, Koopmans, McKean, Vegetti, Treu, Fassnacht, and Glazebrook, Bayer et∼al.(2023)Bayer, Vernardos, and Koopmans], we have recently introduced a novel approach to investigate the collective perturbative effect of low-mass substructures in the inner regions of massive elliptical lens galaxies and observationally constrain their power spectrum (on 1-10 kpc scales) based on the Fourier analysis of the associated surface-brightness anomalies in the lensed images (i.e., Einstein rings and gravitational arcs) observed with the Hubble Space Telescope. Here, we present a concise summary of the methodology, the encountered modelling challenges and the inferred observational constraints on the sub-galactic matter power spectrum. The future comparison of these results with predictions from hydrodynamical simulations might either verify the cold-dark-matter paradigm or require its substantial revision. Moreover, we demonstrate that the grid-based smooth lens modelling might model away surface-brightness anomalies caused by the presence of substructures in the lens galaxy and incorrectly interpret them as surface-brightness structure in the lensed background galaxy itself. If not properly understood and accounted for, such signal suppression might lead to severely biased constraints on the properties of substructures in galactic haloes.
Galaxy-scale strong lensing is a powerful tool in Astrophysics and Cosmology, enabling studies of massive galaxies’ internal structure, their formation and evolution, stellar initial mass function, and cosmological parameters. In this conference proceeding, we highlight key findings from the past decade in astrophysical applications of strong lensing at the galaxy scale. We then briefly summarize the present status of discovery and analyses of new samples from recent or ongoing surveys. Finally, we offer insights into anticipated developments in the upcoming era of big data shaping the future of this field, thanks to the Rubin, Euclid, and Roman observatories.
We are pleased to summarise the IAU Symposium 380, Cosmic Masers: Proper Motion toward the Next-Generation Large Projects held on March 2023 March 20-24 in Kagoshima City, Japan. It is the sixth symposium focusing on astrophysical masers broadly used in research of star formation and evolved stars, astrometric measurements of the Milky Way galaxy, as well as studies of extragalactic environments.
Continental silicate weathering and seafloor carbonate precipitation are key steps in the carbonate-silicate cycle to draw down CO2. Contrary to the classic understanding of negative feedback, silicate weathering can exhibit positive feedback at high temperatures. Taking into account this positive feedback, the compensation depth (CCD) in exoplanet oceans becomes shallower, implying a potential instability in the carbonate-silicate cycle at high temperatures.
We study the formation of the first massive galaxies and their observational properties for comparisons with JWST or ALMA data by performing cosmological radiative-hydrodynamics simulations. We find that galaxies in overdense regions have high star formation rates larger than ∼10 M⊙ yr-1 at z=10 and their stellar masses reach 109 M⊙. The star formation rates of our model galaxies at z≲12 nicely match recent JWST data. In addition, we show that the morphology of galaxies drastically changes with time via major mergers and stellar feedback.
A complete list of combinations of the rates of asteroid perihelia and nodes and the corresponding fundamental frequencies of planets, giving rise to secular resonances and involving up to 4 frequencies, is known from the previous work, while for the resonances with 6 frequencies a systematically derived comprehensive list is given here for the first time. There are 28 divisors in the theory of degree up to 4, not all of which can give rise to resonances, while at degree 6 there are (at least) 33 such possibly resonant frequency combinations.
Mapping the secular resonances by plotting the resonant lines in the phase space of proper elements or of secular frequencies, possibly also against the background of known asteroids, enables to straightforwardly identify resonances causing large long periodic variations of asteroid orbital elements, resonances that interact with known families, those that bound the dynamically distinct regions, deplete or disturb asteroids in these regions, etc.
Over the last two decades, strong gravitational lensing has emerged as a potential method for studying the nature and distribution of dark matter on sub-galactic scales. In addition to the main lens substructure, line-of-sight dark matter haloes contribute greatly to the subtle perturbations of lensed images. Line-of-sight haloes, unlike dark matter subhaloes, imprint distinct anisotropic and quadrupole signatures in the maps that depict the divergence and curl of the effective deflection field, respectively, giving rise to quadrupole moments of the image-plane averaged two-point correlation function of these maps. In terms of central density evolution and dark matter halo distribution, the shapes and amplitudes of the two-point function multipoles alter dramatically in the presence of warm dark matter and self-interacting dark matter. This method, in conjunction with upcoming large-scale surveys, provides the prospect of improving the constraints on dark matter at a critical time in strong gravitational lensing research.
The 64-dish MeerKAT telescope was inaugurated in 2018 and has been conducting regular science operations since then. In the meantime, new observation modes have been under development. Spectral line modes are available, as well as L-, UHF- and S-band receivers. MeerKAT’s excellent sensitivity over a wide range of angular scales makes it an excellent choice for studies of HII regions, supernova remnants and planetary nebulae. In addition, an OH megamaser has been detected at z > 0.5 for the first time.
OH/IR stars are low- to intermediate-mass stars (about 0.5-8 solar masses) in the AGB phase, and are considered to be in the process of evolving from Mira variables to planetary nebulae. We aim to understand the evolutionary stages of these AGB stars by approaching them from astrometric VLBI observations with VERA. In 2017, we have started VLBI observations of several OH/IR stars including OH39.7+1.5 presented in this poster. We observed the H2O maser of OH39.7+1.5 and obtained an annual parallax of 0.55 ± 0.03 mas (distance D = 1.81 ± 0.12 kpc). Using this annual parallax, we revealed distribution (about 35 au square), internal motions, and expansion velocities (average about 15.4 ± 5.1 km s-1) of the maser spots. We compared expansion velocity of H2O maser with that of OH maser and found to be consistent across the error range. This suggests that the radial velocity of H2O gas around OH39.7+1.5 has reached a terminal velocity. OH39.7+1.5 has not data on annual parallax or proper motion in Gaia DR3, and this is the first time that annual parallax has been measured.
The space domain has undergone several changes in the last decade (aka “new space era”), and will continue to do so in coming years. This led to several challenges which should be recognized and tackled by all actors of this domain, including scientists.
Investigating the thermal and non-thermal processes in galaxies is vital to understand their evolution over cosmic time. This can best be studied by combining the radio and optical/near-infrared observations of galaxies. The JWST can resolve the evolution of the thermal processes by mapping ionized gas and dust in distant galaxies. This information combined with the upcoming surveys with the Square Kilometer Array (SKA) will make a major breakthrough in mapping the non-thermal processes and understanding their role in the evolution of galaxies. Our simulations show that SKA surveys will be able to trace the evolution history of spiral galaxies such as M 51 and NGC 6946 back to a redshift of 3 already in its first phase of construction. This study indicates the important role of the non-thermal pressure inserted by cosmic rays and magnetic fields in deriving winds and outflows at cosmic noon as deduced by a flat synchrotron spectrum in star forming galaxies.
We present in the following the introductory talk on “Hazardous asteroids and the Hera mission”, made during the round table on Space Awareness. It reminds the context of our awareness for near-Earth objects, the characterisation of risk, current international surveillance programmes, and mitigation measures in particular with space missions, and last, a rendez-vous with Apophis to note in your agenda for 2029.