To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chapter 1 introduces key observational constraints for the theory of planet formation. It reviews the properties of the Solar System's planets and minor bodies, explains the principle of radioactive dating of primitive meteorites, and defines the minimum mass Solar Nebula. The main methods used to detect extrasolar planets - radial velocity monitoring, transits, direct imaging, microlensing, and astrometry - are introduced and compared. Observed properties of extrasolar planetary systems are reviewed, including the orbital distribution of planets, their mass-radius relation, and the dependence of planet frequency on stellar host properties. The concept of the habitable zone and the factors that influence planetary habitability are described.
Concise and self-contained, this textbook gives a graduate-level introduction to the physical processes that shape planetary systems, covering all stages of planet formation. Writing for readers with undergraduate backgrounds in physics, astronomy, and planetary science, Armitage begins with a description of the structure and evolution of protoplanetary disks, moves on to the formation of planetesimals, rocky, and giant planets, and concludes by describing the gravitational and gas dynamical evolution of planetary systems. He provides a self-contained account of the modern theory of planet formation and, for more advanced readers, carefully selected references to the research literature, noting areas where research is ongoing. The second edition has been thoroughly revised to include observational results from NASA's Kepler mission, ALMA observations and the JUNO mission to Jupiter, new theoretical ideas including pebble accretion, and an up-to-date understanding in areas such as disk evolution and planet migration.
The Square Kilometre Array (SKA) is a planned large radio interferometer designed to operate over a wide range of frequencies, and with an order of magnitude greater sensitivity and survey speed than any current radio telescope. The SKA will address many important topics in astronomy, ranging from planet formation to distant galaxies. However, in this work, we consider the perspective of the SKA as a facility for studying physics. We review four areas in which the SKA is expected to make major contributions to our understanding of fundamental physics: cosmic dawn and reionisation; gravity and gravitational radiation; cosmology and dark energy; and dark matter and astroparticle physics. These discussions demonstrate that the SKA will be a spectacular physics machine, which will provide many new breakthroughs and novel insights on matter, energy, and spacetime.
The coronal heating problem is a long-standing perplexing issue. In this study, 13 solar activity indexes are used to investigate their phase relation with the sunspot number (SSN). Only three of them are found to statistically significantly lag the SSN (large-scale magnetic activity) by about one solar rotation period; the three indexes are total solar irradiance (TSI), the modified coronal index, and the solar wind velocity; the former two indexes may represent the long-term variation of energy quantity of the heated photosphere and corona, respectively. The Mount Wilson Sunspot Index (MWSI) and the Magnetic Plage Strength Index (MPSI), which reflect the large- and small-scale magnetic field activities, respectively, are also utilised to investigate their phase relations with the three indexes. The three indexes are found to be much more intimately related to MPSI than to MWSI, and MWSI statistically significantly leads TSI by about one rotation period. The heated corona is found to pulse perfectly in step with the small-scale magnetic activity rather than the large-scale magnetic activity; furthermore, combined with observations, our statistical evidence should thus attribute coronal heating firmly to small-scale magnetic activity phenomena, such as spicules, micro-flares, nano-flares, and others. The photosphere and the corona are synchronously heated, which should seemingly prefer magnetic reconnection heating to wave heating. In the long term, such a coronal heating way is inferred effective. Statistically, it is also small-scale magnetic activity phenomena that produce TSI enhancement. Coronal heating and solar wind acceleration are found to be synchronous, as standard models require.
KV UMa (XTE J1118+480) is an X-ray binary that is known to undergo outbursts in 2000 and 2005. This paper presents the discovery of a large outburst starting in 1927 on the archival photographic plates and an analysis of the long-term optical activity of this system. We used the photographic data from DASCH (Digital Access to a Sky Century @ Harvard). We placed the 1927 outburst in the context of the observed outbursts of KV UMa. We show that it is a double event, with a precursor similar to the one of the outbursts in 2000. We find a big difference between the 1927 and 2000 outbursts as regards the length of the gap between the precursor and the main outburst. It is more than 250 d in 1927, whereas it is about 20 d in 2000, although the brightnesses of all peaks are mutually comparable. We also show that the individual optical outbursts of KV UMa differ from each other by the duration of the stage of a slow decline of brightness (sometimes roughly a plateau). This determines the length of the entire main outburst. Both the peak magnitude and the brightness of the outburst when the slow decline transitions to a steep final decaying branch plausibly reproduce in all three outbursts. In the interpretation, the short duration of the precursor is caused by the fact that only the thermal-viscous instability operated in the accretion disk while also the tidal instability of the disk contributed in the subsequent main outburst.
In this chapter, we present the basics of the physics and phenomenology of FGKM-type stars. This review is based on recent developments in the observational and theoretical domains of stellar physics, including a variety of techniques – spectroscopy, interferometry, photometry and large-scale stellar surveys. We focus on the advances in radiative transfer modelling and spectroscopy of stars across the full metallicity range. To provide the reader with the essential supplementary information, we also give a brief qualitative account of the structure and evolution of low- and intermediate-mass stars and of stellar nucleosynthesis. We also provide a brief overview of new models of stellar atmospheres and stellar spectra, with emphasis on non-LTE and hydrodynamics. Lastly, we discuss some of the relevant observational studies of stellar abundances in the context of stellar populations, evolution of metal-poor stars and Galactic archeology.
Radiative transfer,i.e., the transport of radiant energy through a medium, can be described in several alternative ways, either atmacroscopic or microscopic level. In order to set a common physical background for the applications of radiative transfer to stellar and planetary atmospheres, presented in the second part of this book, a macroscopic representation of the radiation field derived from radiometry, a microscopic picture based on the kinetics of photons and the transport of radiant energy in terms of Maxwell's electromagnetic theory are discussed.
We consider the fundamental physical processes in stellar atmospheres, together with the basic equations, approximations and techniques used to model them.The coupling of the RT equations with the statistical equilibrium equations is discussed, as well as the role of the atomic properties. The structure equations (equation of state, momentum and energy conservation) that complete the set of equations required to compute a model atmosphere are examined, as well as the broadening mechanisms that change the appearance of the spectral line.
In many cases, the quantitative spectroscopy of early-type stars requires to account for their line-driven winds, and theoretical models of such winds are based on a consistent calculation of the radiative line acceleration. Both topics ask for a thorough understanding of radiative transfer in expanding atmospheres. In this chapter, we concentrate on three issues, and compare, when possible, with corresponding results forplane-parallel, hydrostatic conditions: First, we investigate how sphericity alone affects the radiation field in those cases where Doppler shifts can be neglected (continua). Subsequently, we consider the impact of velocity fields on the line transfer, both by applying the so-called Sobolev approximation,and by presenting the more exact comoving-frame approach. Restrictions and extensions of both methods are discussed. Finally, we concentrate on the coupling between radiation field and occupation numbers via the NLTE rate equations. We illustrate the basic problem within the conventional Lambda Iteration, which is then solved by means of the so-called Accelerated Lambda Iteration (ALI), and by a "preconditioning" of the rate equations.
This chapter considers a selection of numerical methods developed since 1960s for solving radiative transfer (RT) problems in stellar atmospheres and in all other diluted media where non-LTE effects are important. Special emphasis is put on the solution of the radiative transfer equation (RTE) when the source function is given, because its so-called formal solution constitutes a necessary step in any iterative procedure for the solution of more general RT problems. The application of different methods to the spectral line formation the line(s) radiation field and thestatistical equilibrium (SE) equation(s) for the atomic-level populations involved is discussed for both linear and nonlinear problems.
By absorbing and scattering both incident and emergent radiation, an atmosphere regulates a planet's thermal, chemical and cloud structure, and cooling through time. The photons transmitted through or scattered by an atmosphere provide one of our primary sources of information about planetary composition. Therefore, any effort to fully characterize an extrasolar planet must incorporate atmospheric models that attempt to fully describe the relevant processes and thereby predict a planet's reflected and emitted spectra. Brown dwarfs, ultracool substellar objects with atmospheric composition similar to those of many gas giant planets, provide a tractable training ground to test our ideas and models about atmospheric processes under conditions more exotic than found in the Solar System. This chapter aims to concisely summarize the various ingredients that must be included in any model and the overall process of atmospheric model creation for ultracool dwarfs and extrasolar planets. These considerations include the basic atmospheric structure equations, radiative transfer, atmospheric chemistry, clouds and various disequilibrium processes. Each of these topics is worthy of in-depth treatments, and pointers to appropriate review articles are provided for those wishing to understand each component in more detail.
A description is given of stellar atmosphere codes – both codes for calculating the structure of the stellar atmosphere (i.e., including an energy equation) and codes for calculating the emergent spectrum from a given atmospheric structure. Emphasis has been given to codes that are either publicly available or in wide use by a large community. References are given for detailed code descriptions and for typical applications of the codes.
In this paper, we present the stationary axisymmetric configuration of a resistive magnetised thick accretion disc in the vicinity of external gravity and intrinsic dipolar magnetic field of a slowly rotating black hole. The plasma is described by the equations of fully general relativistic magnetohydrodynamics (MHD) along with the Ohm’s law and in the absence of the effects of radiation fields. We try to solve these two-dimensional MHD equations analytically as much as possible. However, we sometimes inevitably refer to numerical methods as well. To fully understand the relativistic geometrically thick accretion disc structure, we consider all three components of the fluid velocity to be non-zero. This implies that the magnetofluid can flow in all three directions surrounding the central black hole. As we get radially closer to the hole, the fluid flows faster in all those directions. However, as we move towards the equator along the meridional direction, the radial inflow becomes stronger from both the speed and the mass accretion rate points of view. Nonetheless, the vertical (meridional) speed and the rotation of the plasma disc become slower in that direction. Due to the presence of pressure gradient forces, a sub-Keplerian angular momentum distribution throughout the thick disc is expected as well. To get a concise analytical form of the rate of accretion, we assume that the radial dependency of radial and meridional fluid velocities is the same. This simplifying assumption leads to radial independency of mass accretion rate. The motion of the accreting plasma produces an azimuthal current whose strength is specified based on the strength of the external dipolar magnetic field. This current generates a poloidal magnetic field in the disc which is continuous across the disc boundary surface due to the presence of the finite resistivity for the plasma. The gas in the disc is vertically supported not only by the gas pressure but also by the magnetic pressure.
We describe the High-Precision Polarimetric Instrument-2 (HIPPI-2) a highly versatile stellar polarimeter developed at the University of New South Wales. Two copies of HIPPI-2 have been built and used on the 60-cm telescope at Western Sydney University’s (WSU) Penrith Observatory, the 8.1-m Gemini North Telescope at Mauna Kea and extensively on the 3.9-m Anglo-Australian Telescope (AAT). The precision of polarimetry, measured from repeat observations of bright stars in the SDSS g′band, is better than 3.5 ppm (parts per million) on the 3.9-m AAT and better than 11 ppm on the 60-cm WSU telescope. The precision is better at redder wavelengths and poorer in the blue. On the Gemini North 8-m telescope, the performance is limited by a very large and strongly wavelength-dependent TP that reached 1000’s of ppm at blue wavelengths and is much larger than we have seen on any other telescope.