To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
I discuss Local Group galaxies from the perspective of external galaxies that define benchmark scaling relations. Making use of this information leads to a model for the Milky Way that includes bumps and wiggles due to spiral arms. This model reconciles the terminal velocities observed in the interstellar medium with the rotation curve derived from stars, correctly predicts the gradual decline of the outer rotation curve, and extrapolates well out to 50 kpc. Rotationally supported Local Group galaxies are in excellent agreement with the baryonic Tully-Fisher relation. Pressure supported dwarfs that are the most likely to be in dynamical equilibrium also align with this relation. Local Group galaxies thus appear to be normal members of the low redshift galaxy population. There is, however, a serious tension between the dynamical masses of the Milky Way and M31 and those expected from the stellar masshalo mass relation of abundance matching.
The nearby Fornax cluster (d ∼ 20 Mpc) provides an unparalleled opportunity to investigate the formation and evolution of early-type galaxies in a dense environment. Using the spectroscopic data from the ESO VLT/VIMOS spectrograph of the Fornax cluster, we have kinematically characterised the photometrically detected globular cluster (GC) candidates in the core of the cluster. We confirm a total of 777 GCs with new velocity measurements and compile the most extensive spectroscopic GC sample of 2341 objects in this environment. We used our GC radial velocity catalogue to perform dynamical mass modelling of NGC 1399, the central galaxy of the the Fornax cluster out to its 200 kpc. We find that both cusp (NFW) and core (Burkert) dark matter (DM) halo can produce the observed kinematics. Independent of the DM halo profile used, we find that inclusion of the intra-cluster GCs in mass-modelling can effect the mass-estimate.
Two planetary nebulae have sofar been observed with JWST. Both show stellar companions. The paper discusses how and what we can learn from the companions.
The controversy “dark matter vs. modified gravity” constitutes a major topic of discussion. It was proposed that dynamical friction could be used to discriminate between the two alternatives. Analytic calculations indicate that, with modified gravity, globular clusters (GCs) of low-mass galaxies experience much stronger dynamical friction than in the equivalent system with Newtonian gravity and dark matter. As a result, in modified gravity the old GCs of low mass galaxies should have already settled in the centers of the galaxies. This is not observed. Here we report on our efforts to verify the analytic results by self-consistent simulations with the MOND-type (modified Newtonian dynamics) gravity. The core stalling mechanism, that was not considered in the analytic calculations, prevents GCs to settle in centers of ultra-diffuse galaxies. For isolated dwarf galaxies, which are gas-rich objects, supernova explosions prevent the GCs from settling.
We present JWST images of NGC 6720 (the Ring Nebula), covering wavelengths from 1.6 μm to 25 μm. The bright shell is strongly fragmented with some 20 000 dense globules, bright in H2, with a characteristic diameter of 0.2 arcsec and density nH∼105–106cm−3. The shell contains a narrow ring of polycyclic aromatic hydrocarbon (PAH) emission. H2 is found throughout the shell and also in the halo. The central cavity is filled with high ionization gas and shows two linear structures seen in projection against the cavity. The central star is located 2 arcsec from the emission centroid of the cavity and shell. Linear features (‘spikes’) extend outward from the ring, pointing away from the central star. Around ten low-contrast, regularly spaced concentric arc-like features are present; they suggest orbital modulation by a low-mass companion with a period of about 280 yr. A previously known much wider companion is located at a projected separation of about 15 000 au; we show that it is an M2–M4 dwarf. NGC 6720 is therefore a triple star system. These features, including the multiplicity, are similar to those seen in the Southern Ring Nebula (NGC 3132) and may be a common aspect of such nebulae.
As a relatively active region, ephemeral region (ER) exhibits highly complex pattern of magnetic flux emergence. We aim to study detailed secondary flux emergences (SFEs) which we define as bipoles that their locations close to ERs and finally coalesce with ERs after a period. We study the SFEs during the whole process from emergence to decay of 5 ERs observed by the Helioseismic and Magnetic Imager (HMI) aboard Solar Dynamics Observatory (SDO). We find that the maximum unsigned magnetic flux for each of the ERs is around 1020 Mx. All ERs have tens of SFEs with an average emerging magnetic flux of approximately 5×1018 Mx. The frequency of normalized magnetic flux for all the SFEs follows a power law distribution with an index of -2.08. The majority of SFEs occur between the positive and negative polarities of ER, and their growth time is concentrated within one hour. The magnetic axis of SFEs also exhibits a random characteristic. We suggest that the relationship between SFEs and ERs can be understood by regarding the photospheric magnetic field observations as cross-sections of an emerging magnetic structure. Tracking the ERs’ evolution, we propose that the flux emergences are partially emerged Ω-loops, and that the SFEs in ERs may be sequent emergences from the bundle of flux tube of ERs.
Flux emergence at different spatial scales and with different amounts of flux has been studied using radiative magnetohydrodynamics (rMHD) simulations. We use the radiative MHD code MURaM to simulate the emergence of an untwisted magnetic flux tube of ephemeral region scale with a density nonuniformity into a background atmosphere with a small unipolar open field. We find that the tube rises to the photosphere, forming complex loop structures seen in synthetic Atmospheric Imaging Assembly(AIA) 171 Å images. The atmosphere reaches 105K at 3Mm above the surface. Our simulation provides a reference example of a less twisted ephemeral region emergence and the atmospheric response.
The inherent stochastic and nonlinear nature of the solar dynamo makes the strength of the solar cycles vary in a wide range, making it difficult to predict the strength of an upcoming solar cycle. Recently, our work has shown that by using the observed correlation of the polar field rise rate with the peak of polar field at cycle minimum and amplitude of following cycle, an early prediction can be made. In a follow-up study, we perform SFT simulations to explore the robustness of this correlation against variation of meridional flow speed, and against stochastic fluctuations of BMR tilt properties that give rise to anti-Joy and anti-Hale type anomalous BMRs. The results suggest that the observed correlation is a robust feature of the solar cycle and can be utilized for a reliable prediction of peak strength of a cycle at least 2 to 3 years earlier than the minimum.
In the last two decades, some arguments have accumulated for a more important mass ratio of the Large Magellanic Cloud (LMC) to the Milky Way (MW) than was previously thought, up to a value of 10% or more. This implies that the LMC has a measurable influence on the dynamics in the MW stellar halo, including both stellar densities and kinematics, as observed by Conroy et al. (2021) and Petersen and Peñarrubia (2021). While this merger has been previously reproduced using N-body simulations (see, e.g., Garavito-Camargo et al. 2019), I exploit here the results of a recent study (Rozier et al. 2022) which aimed at modelling the merger via linear response theory (LRT). More specifically, we integrated the linearized collisionless Boltzmann-Poisson system of partial differential equations using a methodology known as the matrix method. Our results display the same large scale behaviour as state-of-the-art simulations, with a dipolar over/underdense pattern related to the reflex motion of the MW, and an overdense wake trailing behind the LMC. Using LRT, I show that the response’s self-gravity can be neglected, implying a direct proportionality between the LMC to MW mass ratio and the amplitude of the relative density variations of the MW stellar halo. However, these overdensities may also depend on other model parameters, such as the structure of the MW potential (including a dark matter component), the initial stellar halo density, as well as its internal kinematics. I focus on the latter source of degeneracy, showing how the stellar halo’s velocity anisotropy impacts its response to the LMC. Interestingly enough, it appears that the density of the dipolar response is insensitive to the stellar halo’s initial velocity anisotropy, and can therefore represent an efficient probe of the LMC to MW mass ratio.
The objective of our study was the spectroscopic analysis of the PN NGC 3242, which contains a pair of low-ionization structures (LISs). For our analysis, MUSE data were used in conjunction with the SATELLITE code for a spectroscopic analysis in two spatial dimensions. Additionally, infrared images from Spitzer Space Telescope (SST) were employed to search for potential H2 emission at the LISs. The preliminary results revealed that the electron temperature calculated from [N II] diagnostics lines is approximately 12,000 K at the LISs, while the thorough examination of MUSE data has led to the identification of the [C I] 8727 Å emission line emitted only from the LISs. This result may imply that LISs are the optical counterpart of a dense molecular core. Spitzer’s data didn’t reveal the existence of H2 at LISs, but three rings were identified around the main body of the PN.
This study focuses on investigating planetary nebulae (PNe) within the dwarf galaxy VCC 1249, located in the halo of the early-type galaxy (ETG) M49, by utilizing data obtained from the Multi-Unit Spectroscopic Explorer (MUSE). The integral-field spectroscopy capabilities of MUSE enable the identification of individual planetary nebulae. The interaction of VCC 1249 with the cluster-dominant galaxy M49 in the Virgo Subcluster B is driving this project, as it offers a unique opportunity to explore how high-density environments influence the properties and fate of low-mass galaxies. To identify potential PNe candidates within VCC 1249, the method proposed by Roth et al. (2021) is employed. Through this approach, ten candidates exhibiting features consistent with PNe properties have been identified.
The grand minimum in the Sun’s activity is a distinctive mode characterized by a magnetic lull that almost completely lacks the emergence of sunspots on the solar surface for an extended duration. The factors driving this transition of an otherwise magnetically active star into a quiescent phase, the processes occurring within the solar interior and across the heliosphere during this period, and the mechanisms leading to the eventual resurgence of surface magnetic activity remain enigmatic. However, there have been sustained efforts in the past few decades to unravel these mysteries by employing a combination of observation, reconstruction and simulation of solar magnetic variability. Here, we summarize recent research on the solar grand minimum and highlight some outstanding challenges – both intellectual and practical – that necessitate further investigations.
Low- and intermediate-mass (LIM) stars play a pivotal role in the life cycle of their host environment. During the asymptotic giant branch (AGB) phase, they eject gas reprocessed by the internal nucleosynthesis and dust formed in their cool and dense circumstellar envelopes. The production of dust is strongly linked to the evolution of the central object during the AGB phase. Even after the AGB evolution, the effects of the stars’ previous evolutionary history, including nucleosynthesis, mass loss, and dust production processes, are still evident. Recently, we introduced a novel approach to address clues connected to the dust production and mass loss history of LIM stars looking at the post-AGB and planetary nebula (PN) evolutionary stage. By utilizing stellar evolution and dust formation models, we analyze the spectral energy distribution (SED) of sources currently undergoing various evolutionary phases, which are believed to have originated from progenitors with similar mass and chemical composition. Comparing the results from different stages along the AGB to PNe transition can provide valuable insights into the amount of dust and gas released during the very late AGB phases. While the post-AGB phase allows us to trace the history of dust production back to the AGB phase’s tip, investigating the PNe is crucial for reconstructing the mass-loss process that occurred after the last thermal pulse.
We report for the first time a relationship between galaxy kinematics and net Lyman-$\alpha$ equivalent width (net Ly$\alpha$ EW) in star-forming galaxies during the epoch of peak cosmic star formation. Building on the previously reported broadband imaging segregation of Ly$\alpha$-emitting and Ly$\alpha$-absorbing Lyman break galaxies (LBGs) at $z\sim2$ (Paper I in this series) and previously at $z\sim3$, we use the Ly$\alpha$ spectral type classification method to study the relationship between net Ly$\alpha$ EW and nebular emission-line kinematics in samples of $z\sim2$ and $z\sim3$ LBGs drawn from the literature for which matching rest-frame UV photometry, consistently measured net Ly$\alpha$ EWs, and kinematic classifications from integral field unit spectroscopy are available. We show that $z\sim2$ and $z\sim3$ LBGs segregate in colour-magnitude space according to their kinematic properties and Lyman-$\alpha$ spectral type and conclude that LBGs with Ly$\alpha$ dominant in absorption (aLBGs) are almost exclusively rotation-dominated (presumably disc-like) systems, and LBGs with Ly$\alpha$ dominant in emission (eLBGs) characteristically have dispersion-dominated kinematics. We quantify the relationship between the strength of rotational dynamic support (as measured using ${v}_{\mathrm{obs}}/2{\sigma }_{\mathrm{int}}$ and ${v}_{\mathrm{rot}}/{\sigma}_{\mathrm{0}}$) and net Ly$\alpha$ EW for subsets of our kinematic sample where these data are available, and demonstrate the consistency of our result with other properties that scale with net Ly$\alpha$ EW and kinematics. Based on these findings, we suggest a method by which large samples of rotation- and dispersion-dominated galaxies might be selected using broadband imaging in as few as three filters and/or net Ly$\alpha$ EW alone. If confirmed with larger samples, application of this method will enable an understanding of galaxy kinematic behaviour over large scales in datasets from current and future large-area and all-sky photometric surveys that will select hundreds of millions of LBGs in redshift ranges from $z\sim2-6$ across many hundreds to thousands of Mpc. Finally, we speculate that the combination of our result linking net Ly$\alpha$ EW and nebular emission-line kinematics with the known large-scale clustering behaviour of Ly$\alpha$-absorbing and Ly$\alpha$-emitting LBGs is evocative of an emergent bimodality of early galaxies that is consistent with a nascent morphology-density relation at $z\sim2-3$.
Galaxy gas kinematics are sensitive to the physical processes that contribute to a galaxy’s evolution. It is expected that external processes will cause more significant kinematic disturbances in the outer regions, while internal processes will cause more disturbances for the inner regions. Using a subsample of 47 galaxies ($0.27<z<0.36$) from the Middle Ages Galaxy Properties with Integral Field Spectroscopy (MAGPI) survey, we conduct a study into the source of kinematic disturbances by measuring the asymmetry present in the ionised gas line-of-sight velocity maps at the $0.5R_e$ (inner regions) and $1.5R_e$ (outer regions) elliptical annuli. By comparing the inner and outer kinematic asymmetries, we aim to better understand what physical processes are driving the asymmetries in galaxies. We find the local environment plays a role in kinematic disturbance, in agreement with other integral field spectroscopy studies of the local universe, with most asymmetric systems being in close proximity to a more massive neighbour. We do not find evidence suggesting that hosting an Active Galactic Nucleus contributes to asymmetry within the inner regions, with some caveats due to emission line modelling. In contrast to previous studies, we do not find evidence that processes leading to asymmetry also enhance star formation in MAGPI galaxies. Finally, we find a weak anti-correlation between stellar mass and asymmetry (i.e., high stellar mass galaxies are less asymmetric). We conclude by discussing possible sources driving the asymmetry in the ionised gas, such as disturbances being present in the colder gas phase (either molecular or atomic) prior to the gas being ionised, and non-axisymmetric features (e.g., a bar) being present in the galactic disk. Our results highlight the complex interplay between ionised gas kinematic disturbances and physical processes involved in galaxy evolution.
Very metal-poor (VMP, [Fe/H]<-2.0) stars serve as invaluable repositories of insights into the nature and evolution of the first-generation stars formed in the early galaxy. The upcoming China Space Station Telescope (CSST) will provide us with a large amount of spectral data that may contain plenty of VMP stars, and thus it is crucial to determine the stellar atmospheric parameters ($T_{\textrm{eff}}$, $\log$ g, and [Fe/H]) for low-resolution spectra similar to the CSST spectra ($R\sim 200$). This study introduces a novel two-dimensional Convolutional Neural Network (CNN) model, comprised of three convolutional layers and two fully connected layers. The model’s proficiency is assessed in estimating stellar parameters, particularly metallicity, from low-resolution spectra ($R \sim 200$), with a specific focus on enhancing the search for VMP stars within the CSST spectral data. We mainly use 10 008 spectra of VMP stars from LAMOST DR3, and 16 638 spectra of non-VMP stars ([Fe/H]>-2.0) from LAMOST DR8 for the experiments and apply random forest and support vector machine methods to make comparisons. The resolution of all spectra is reduced to $R\sim200$ to match the resolution of the CSST, followed by pre-processing and transformation into two-dimensional spectra for input into the CNN model. The validation and practicality of this model are also tested on the MARCS synthetic spectra. The results show that using the CNN model constructed in this paper, we obtain Mean Absolute Error (MAE) values of 99.40 K for $T_{\textrm{eff}}$, 0.22 dex for $\log$ g, 0.14 dex for [Fe/H], and 0.26 dex for [C/Fe] on the test set. Besides, the CNN model can efficiently identify VMP stars with a precision rate of 94.77%, a recall rate of 93.73%, and an accuracy of 95.70%. This paper powerfully demonstrates the effectiveness of the proposed CNN model in estimating stellar parameters for low-resolution spectra ($R\sim200$) and recognizing VMP stars that are of interest for stellar population and galactic evolution work.
Measurement of internal structures in the prestellar core is essential for understanding the initial conditions prior to star formation. In this work, we study the ammonia lines (NH$_{3}$) (J, K = 1,1 and 2,2) in the central region of the prestellar core L1517B with the Karl G. Jansky Very Large Array (VLA) radio telescope (spatial resolution $\sim$ 3.7′′). Our analysis indicates that the central region of the core is close-to-round in shape obtained both from NH$_{3}$ (1,1) and (2,2) emissions. Radially averaged kinetic temperature ($T_{k}$) is almost constant with a mean value of $\sim$ 9 K. A radially sharp decrease in kinetic temperature ($T_{k}$) has not been observed inside the central dense nucleus of this prestellar core. In addition, we also notice that there is an overall velocity gradient from north-east to south-west direction in this region, which may be indicative of the rotational motion of the core. We then calculate the parameter $\beta$, which is defined as the ratio of rotational energy to gravitational potential energy and find that $\beta$ equals to $\sim$ 5 $\times$ 10$^{-3}$; which indicates that rotation has no effect at least inside the central region of the core. We also perform the viral analysis and observe that the central region may be in a stage of contraction. From this study, we also show that turbulence inside the central region is subsonic in nature (sonic Mach number, $M_{s}$$<$ 1) and has no prominent length-scale dependence. Furthermore, we notice that the decrement of excitation temperature ($T_{ex}$) and column density of NH$_{3}$ from the centre of the core to the outer side with the peak values of $\sim$ 5.6 K and $\sim$ 10$^{15}$ cm$^{-2}$, respectively. In conclusion, this work examines different physical and kinematical properties of the central region of the L1517B prestellar core.
Typical radio interferometer observations are performed assuming the source of radiation to be in the far-field of the instrument, resulting in a two-dimensional Fourier relationship between the observed visibilities in the aperture plane and the sky brightness distribution (over a small field of view). When near-field objects are present in an observation, the standard approach applies far-field delays during correlation, resulting in loss of signal coherence for the signal from the near-field object. In this paper, we demonstrate near-field aperture synthesis techniques using a Murchison Widefield Array observation of the International Space Station (ISS), as it appears as a bright near-field object. We perform visibility phase corrections to restore coherence across the array for the near-field object (however not restoring coherence losses due to time and frequency averaging at the correlator). We illustrate the impact of the near-field corrections in the aperture plane and the sky plane. The aperture plane curves to match the curvature of the near-field wavefront, and in the sky plane near-field corrections manifest as fringe rotations at different rates as we bring the focal point of the array from infinity to the desired near-field distance. We also demonstrate the inverse scenario of inferring the line-of-sight range of the ISS by inverting the apparent curvature of the wavefront seen by the aperture. We conclude the paper by briefly discussing the limitations of the methods developed and the near-field science cases where our approach can be exploited.
Radio interferometers can potentially detect the sky-averaged signal from the Cosmic Dawn (CD) and the Epoch of Reionisation (EoR) by studying the Moon as a thermal block to the foreground sky. The first step is to mitigate the Earth-based radio frequency interference (RFI) reflections (Earthshine) from the Moon, which significantly contaminate the FM band $\approx 88-110$ MHz, crucial to CD-EoR science. We analysed Murchison Widefield Array (MWA) phase I data from 72 to 180 MHz at 40 kHz resolution to understand the nature of Earthshine over three observing nights. We took two approaches to correct the Earthshine component from the Moon. In the first method, we mitigated the Earthshine using the flux density of the two components from the data, while in the second method, we used simulated flux density based on an FM catalogue to mitigate the Earthshine. Using these methods, we were able to recover the expected Galactic foreground temperature of the patch of sky obscured by the Moon. We performed a joint analysis of the Galactic foregrounds and the Moon’s intrinsic temperature $(T_{\mathrm{Moon}})$ while assuming that the Moon has a constant thermal temperature throughout three epochs. We found $T_{\mathrm{Moon}}$ to be at $184.4\pm{2.6}\,\mathrm{K}$ and $173.8\pm{2.5}\,\mathrm{K}$ using the first and the second methods, respectively, and the best-fit values of the Galactic spectral index $(\alpha)$ to be within the 5% uncertainty level when compared with the global sky models. Compared with our previous work, these results improved constraints on the Galactic spectral index and the Moon’s intrinsic temperature. We also simulated the Earthshine at MWA between November and December 2023 to find suitable observing times less affected by the Earthshine. Such observing windows act as Earthshine avoidance and can be used to perform future global CD-EoR experiments using the Moon with the MWA.
Recent studies of Galactic evolution revealed that the dynamics of the stellar component might be one of the key factors when considering galactic habitability. We run an N-body simulation model of the Milky Way, which we evolve for 10 Gyr, to study the secular evolution of stellar orbits and the resulting galactic habitability related properties, i.e., the density of the stellar component and close stellar encounters. The results indicate that radial migrations are not negligible, even in a simple axisymmetric model with mild levels of dynamical heating, and that the net outward diffusion of the stellar component can populate galactic outskirts with habitable systems. Habitable environment is also likely even at sub-Solar galactocentric radii, because the rate of close encounters should not significantly degrade habitability. Stars that evolve from non-circular to stable nearly circular orbits typically migrate outwards, settling down in a broad Solar neighbourhood. The region between $R \approx 3$ kpc and $R \approx 12$ kpc represents the zone of radial mixing, which can blur the boundaries of the Galactic Habitable Zone (GHZ), as it has been conventionally understood. The present-day stable population of the stars in the Solar neighbourhood originates from this radial mixing zone, with most of the stars coming from the inner regions. The Solar system can be considered as a typical Milky Way habitable system because it migrated outwards from the metal-rich inner regions of the Disk and has a circular orbit in the present epoch. We conclude that the boundaries of the GHZ cannot be sharply confined for a given epoch because of the mixing caused by the stellar migrations and secular evolution of stellar orbits.