To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter explores what is known as the Cosmic Microwave Background (CMB), what it is, how it was discovered and our recent efforts to measure and map it. In general, the analysis finds remarkably good overall agreement with predictions of the now-standard “lambda CDM” model of a universe, in which there is both cold dark matter (CDM) to spur structure formation, as well as dark-energy acceleration that is well-represented by a cosmological constant, lambda. From this we can infer 13.8 Gyr for the age of the universe.
The timescale analyses in Chapter 8 show that nuclear fusion provides a long-lasting energy source that we can associate with main-sequence stars in the H–R diagram. This chapter addresses the following questions: What are the requirements for H to He fusion to occur in the stellar core? And how is this to be related to the luminosity versus surface temperature scaling for main-sequence stars? In particular, how might this determine the relation between mass and radius? What does it imply about the lower mass limit for stars to undergo hydrogen fusion?
We walk through the different epochs and eras of the universe, going forward in time from the Hot Big Bang. In the earliest universe, radiation (photons) dominated over matter. As the universe cools, electrons are able to recombine with protons, then helium and other light elements were formed in the first few minutes. Cosmic inflation is posited to overcome several problems, but investigations to probe and perhaps confirm inflation are ongoing.
This chapter gives a brief overview of observational astronomy, using optical instruments and other wavelengths. We present a general formula for the increase in the limiting magnitude resulting from an increased telescope aperture. For light of particular wavelength, the diffraction from a telescope with a specific diameter sets a fundamental limit to the smallest possible angular separation that can be resolved.
Observations of binary systems indicate that main sequence stars follow an empirical mass–luminosity relation L ~ M3. The physical basis for this can be understood by considering the two basic relations of stellar structure, namely hydrostatic equilibrium and radiative diffusion. In practice, the transport of energy from the stellar interior toward the surface sometimes occurs through convection instead of radiative diffusion; this has important consequence for stellar structure and thus for the scaling of luminosity.
The study of stellar dynamics is experiencing an exciting new wave of interest thanks to observational campaigns and the ready availability of powerful computers. Whilst its relevance includes many areas of astrophysics, from the structure of the Milky Way to dark matter halos, few texts are suited to advanced students. This volume provides a broad overview of the key concepts beyond the elementary level, bridging the gap between the standard texts and specialist literature. The author reviews Newtonian gravity in depth before examining the dynamical properties of collisional and collisionless stellar-dynamical systems that result from gravitational interactions. Guided examples and exercises ensure a thorough grounding in the mathematics, while discussions of important practical applications give a complete picture of the subject. Readers are given a sound working knowledge of the fundamental ideas and techniques employed in the field and the conceptual background needed to progress to more advanced graduate-level treatises.
We present an overview of the SkyMapper optical follow-up programme for gravitational-wave event triggers from the LIGO/Virgo observatories, which aims at identifying early GW170817-like kilonovae out to $\sim200\,\mathrm{Mpc}$ distance. We describe our robotic facility for rapid transient follow-up, which can target most of the sky at $\delta<+10\deg $ to a depth of $i_\mathrm{AB}\approx 20\,\mathrm{mag}$. We have implemented a new software pipeline to receive LIGO/Virgo alerts, schedule observations and examine the incoming real-time data stream for transient candidates. We adopt a real-bogus classifier using ensemble-based machine learning techniques, attaining high completeness ($\sim98\%$) and purity ($\sim91\%$) over our whole magnitude range. Applying further filtering to remove common image artefacts and known sources of transients, such as asteroids and variable stars, reduces the number of candidates by a factor of more than 10. We demonstrate the system performance with data obtained for GW190425, a binary neutron star merger detected during the LIGO/Virgo O3 observing campaign. In time for the LIGO/Virgo O4 run, we will have deeper reference images allowing transient detection to $i_\mathrm{AB}\approx 21\,\mathrm{mag}$.
Star-formation is one of the key processes that shape the current state and evolution of galaxies. This volume provides a comprehensive presentation of the different methods used to measure the intensity of recent or on-going star-forming activity in galaxies, discussing their advantages and complications in detail. It includes a thorough overview of the theoretical underpinnings of star-formation rate indicators, including topics such as stellar evolution and stellar spectra, the stellar initial mass function, and the physical conditions in the interstellar medium. The authors bring together in one place detailed and comparative discussions of traditional and new star-formation rate indicators, star-formation rate measurements in different spatial scales, and comparisons of star-formation rate indicators probing different stellar populations, along with the corresponding theoretical background. This is a useful reference for students and researchers working in the field of extragalactic astrophysics and studying star-formation in local and higher-redshift galaxies.
We present the first Southern-Hemisphere all-sky imager and radio-transient monitoring system implemented on two prototype stations of the low-frequency component of the Square Kilometre Array (SKA-Low). Since its deployment, the system has been used for real-time monitoring of the recorded commissioning data. Additionally, a transient searching algorithm has been executed on the resulting all-sky images. It uses a difference imaging technique to enable identification of a wide variety of transient classes, ranging from human-made radio-frequency interference to genuine astrophysical events. Observations at the frequency 159.375 MHz and higher in a single coarse channel ($\approx$0.926 MHz) were made with 2 s time resolution, and multiple nights were analysed generating thousands of images. Despite having modest sensitivity ($\sim$ few Jy beam–1), using a single coarse channel and 2-s imaging, the system was able to detect multiple bright transients from PSR B0950+08, proving that it can be used to detect bright transients of an astrophysical origin. The unusual, extreme activity of the pulsar PSR B0950+08 (maximum flux density $\sim$155 Jy beam–1) was initially detected in a ‘blind’ search in the 2020 April 10/11 data and later assigned to this specific pulsar. The limitations of our data, however, prevent us from making firm conclusions of the effect being due to a combination of refractive and diffractive scintillation or intrinsic emission mechanisms. The system can routinely collect data over many days without interruptions; the large amount of recorded data at 159.375 and 229.6875 MHz allowed us to determine a preliminary transient surface density upper limit of $1.32 \times 10^{-9} \text{deg}^{-2}$ for a timescale and limiting flux density of 2 s and 42 Jy, respectively. In the future, we plan to extend the observing bandwidth to tens of MHz and improve time resolution to tens of milliseconds in order to increase the sensitivity and enable detections of fast radio bursts below 300 MHz.
Knowledge of the output and three dimensional distribution of all constituents of galaxies (stars of all ages, gas, dust, cosmic rays) is a prerequisite for understanding the process of star-formation along the cosmic time, and ultimately the formation and evolution of galaxies. However, what we measure is the spatial and spectral energy distribution (SED) of galaxies. In this chapter we describe self-consistent modeling of the SED involvingradiative transfer (RT) calculations that follow the interaction between stellar photons and dust particles, and make predictions for all emission mechanisms involved. Tracing the energy flow and accounting for the anisotropy of the problem requires modelling of SEDs spanning a broad range in wavelengths and the spatial distribution of the emission. A RT modelaccurately calculates the stellar SEDs emitted by the newly-formed stars by both calculating the effect of dust attenuation throughout the galaxy, and by providing a three dimensional picture of the stellar emission of these stars. This way it produces a solution for the SFR, and the 3D distributions of all stellar components of a galaxy (stars of all ages and from different morphological components, like disks, bulges, and bars) and of the dust distribution, giving us a detailed understanding of the make up of a galaxy, both of its stellar content and of the interstellar medium structure.
Everything we know about galaxies and the stars that form within them comes from the photons we detect across the electromagnetic spectrum. Gaining the greatest possible knowledge from the light we detect is thus key to understanding young stellar populations. To do this requires a detailed model of the physical processes producing the luminous signal we detect and quantify. In this chapter we will concentrate on the details of stars and stellar populations. We will address how we can model stars and predict how they appear, and thus how we derive the star-formation rate of observed galaxies by comparing theoretical predictions to observations. We will discuss the current understanding in this area and highlight significant recent advances that have modified this understanding. First we discuss the evolution of stars, followed by modelling of their atmospheres. Then we consider how we can combine these to create model stellar populations and eventually synthesize a predicted spectrum. Finally we discuss other factors and caveats that must be considered in spectral synthesis, before looking towards the future of this field.