To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This is the first advanced, systematic and comprehensive look at weak decays in the framework of gauge theories, covering both theoretical and experimental topics. In addition to explicit advanced calculations of Feynman diagrams and the study of renormalization group strong interaction effects in weak decays, the book is devoted to the Standard Model Effective Theory, dominating present phenomenology in this field, and to new physics models with the goal of searching for new particles and interactions through quantum fluctuations. This book will benefit theorists, experimental researchers, and Ph.D. students working on flavour physics, weak decays and physics beyond the Standard Model. In its concern for the search for new phenomena at short distance scales through the interplay between theory and experiment, this book constitutes a travel guide to physics far beyond the scales explored by CERN's Large Hadron Collider. This title is also available as open access on Cambridge Core.
The study of neutrinos and their interaction with matter has made many important contributions to our present knowledge of physics. This advanced text introduces neutrino physics and presents a theoretical framework for describing relativistic particles. It gives a pedagogical description of the neutrino, its properties, the standard model of electroweak interactions, and neutrino scattering from leptons and nucleons. Focusing on the role of nuclear effects, the discussion extends to various processes of quasielastic, inelastic, and deep inelastic scattering from nucleons and nuclei. Neutrino sources, detection and oscillation, along with the role of neutrinos in astrophysics and motivation for the need of physics beyond the standard model are discussed in detail. This topical book will stimulate new ideas and avenues for research, and will form a valuable resource for advanced students and researchers working in the field of neutrino physics.
Magnetic resonance is a field that has expanded to a range of disciplines and applications, both in basic research and in its applications, and polarized targets have played an important role in this growth. This volume covers the range of disciplines required for understanding polarized targets, focusing in particular on the theoretical and technical developments made in dynamic nuclear polarization (DNP), NMR polarization measurement, high-power refrigeration, and magnet technology. Beyond particle and nuclear physics experiments, dynamically polarized nuclei have been used for experiments involving structural studies of biomolecules by neutron scattering and by NMR spectroscopy. Emerging applications in MRI are also benefiting from the sensitivity and contrast enhancements made possible by DNP or other hyperpolarization techniques. Topics are introduced theoretically using language and terminology suitable for scientists and advanced students from a range of disciplines, making this an accessible resource to this interdisciplinary field.