Hostname: page-component-76dd75c94c-lntk7 Total loading time: 0 Render date: 2024-04-30T07:18:40.169Z Has data issue: false hasContentIssue false

Comparison of time-inhomogeneous Markov processes

Published online by Cambridge University Press:  11 January 2017

Ludger Rüschendorf*
Affiliation:
University of Freiburg
Alexander Schnurr*
Affiliation:
Siegen University and TU Dortmund
Viktor Wolf*
Affiliation:
University of Freiburg
*
* Postal address: Department of Mathematical Stochastics , University of Freiburg, Eckerstraße 1, 79104 Freiburg, Germany.
** Postal address: Department of Mathematics, Siegen University, Walter-Flex-Straße 3, 57068 Siegen, Germany. Email address: schnurr@mathematik.uni-siegen.de
* Postal address: Department of Mathematical Stochastics , University of Freiburg, Eckerstraße 1, 79104 Freiburg, Germany.

Abstract

Comparison results are given for time-inhomogeneous Markov processes with respect to function classes with induced stochastic orderings. The main result states the comparison of two processes, provided that the comparability of their infinitesimal generators as well as an invariance property of one process is assumed. The corresponding proof is based on a representation result for the solutions of inhomogeneous evolution problems in Banach spaces, which extends previously known results from the literature. Based on this representation, an ordering result for Markov processes induced by bounded and unbounded function classes is established. We give various applications to time-inhomogeneous diffusions, to processes with independent increments, and to Lévy-driven diffusion processes.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bassan, B. and Scarsini, M. (1991). Convex orderings for stochastic processes. Comment. Math. Univ. Carolin. 32, 115118.Google Scholar
Bäuerle, N., Blatter, A. and Müller, A. (2008). Dependence properties and comparison results for Lévy processes. Math. Meth. Operat. Res. 67, 161186.CrossRefGoogle Scholar
Bellamy, N. and Jeanblanc, M. (2000). Incompleteness of markets driven by a mixed diffusion. Finance Stoch. 4, 209222.CrossRefGoogle Scholar
Bergenthum, J. and Rüschendorf, L. (2006). Comparison of option prices in semimartigale models. Finance Stoch. 10, 222249.CrossRefGoogle Scholar
Bergenthum, J. and Rüschendorf, L. (2007a). Comparison of semimartingales and Lévy processes. Ann. Prob. 35, 228254.Google Scholar
Bergenthum, J. and Rüschendorf, L. (2007b). Convex ordering criteria for Lévy processes. Adv. Data Anal. Classif. 1, 143173.CrossRefGoogle Scholar
Böttcher, B. (2008). Construction of time-inhomogeneous Markov processes via evolution equations using pseudo-differential operators. J. London Math. Soc. (2) 78, 605621.CrossRefGoogle Scholar
Chen, M.-F. (2004). From Markov Chains to Non-Equilibrium Particle Systems, 2nd edn. World Scientific, River Edge, NJ.Google Scholar
Chen, M. F. and Wang, F. Y. (1993). On order-preservation and positive correlations for multidimensional diffusion processes. Prob. Theory Relat. Fields 95, 421428.Google Scholar
Courrège, P. (1966). Sur la forme intégro-différentielle des opérateurs de C k dans C satisfaisant au principe du maximum. Théorie Potentiel 10, 138.Google Scholar
Cox, T. J., Fleischmann, K. and Greven, A. (1996). Comparison of interacting diffusions and an application to their ergodic theory. Prob. Theory Relat. Fields 105, 513528.CrossRefGoogle Scholar
Daduna, H. and Szekli, R. (2006). Dependence ordering for Markov processes on partially ordered spaces. J. Appl. Prob. 43, 793814.CrossRefGoogle Scholar
Dynkin, E. B. (1965). Markov Processes, Vol. I. Springer, Berlin.Google Scholar
El Karoui, N., Jeanblanc-Picqué, M. and Shreve, S. E. (1998). Robustness of the Black and Scholes formula. Math. Finance 8, 93126.CrossRefGoogle Scholar
Engel, K.-J.and Nagel, R. (2000). One-Parameter Semigroups for Linear Evolution Equations (Graduate Texts Math.194). Springer, New York.Google Scholar
Eskin, G. I. (YEAR). Boundary Value Problems for Elliptic Pseudodifferential Equations (Transl. Math. Monogr.52). American Mathematical Society, Providence, RI.Google Scholar
Ethier, S. N. and Kurtz, T. G. (2005). Markov Processes: Characterization and Convergence. John Wiley, Hoboken, NJ.Google Scholar
Friedman, A. (2008). Partial Differential Equations. Dover, Mineola, NY.Google Scholar
Greven, A., Klenke, A. and Wakolbinger, A. (2002). Interacting diffusions in a random medium: comparison and long time behavior. Stoch. Process. Appl. 98, 2341.CrossRefGoogle Scholar
Guendouzi, T. (2009). Directionally convex ordering in multidimensional jump diffusion models. Internat. J. Contemp. Math. Sci. 4, 969977.Google Scholar
Gulisashivili, A. and van Casteren, J. A. (2006). Non-Autonomous Kato Classes and Feynman–Kac Propagators. World Scientific, Hackensack, NJ.CrossRefGoogle Scholar
Gushchin, A. A. and Mordecki, E. (2002). Bounds on option prices for semimartingale market models. Proc. Steklov Inst. Math. 2002, 73113.Google Scholar
Herbst, I. and Pitt, L. (1991). Diffusion equation techniques in stochastic monotonicity and positive correlations. Prob. Theory Relat. Fields 87, 275312.CrossRefGoogle Scholar
Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Studies 6, 327343.CrossRefGoogle Scholar
Hobson, W. (1998). Volatility misspecification, option pricing and superreplication via coupling. Ann. Appl. Prob. 8, 193205.Google Scholar
Hoh, W. (1998). Pseudodifferential operators generating Markov processes. Habilitationsschrift, Universität Bielefeld.Google Scholar
Jacob, N. (2002). Pseudo-Differential Operators and Markov Processes, Vol. 1, Fourier Analysis and Semigroups. Imperial College Press, London.CrossRefGoogle Scholar
Jacob, N. (2002). Pseudo-Differential Operators and Markov Processes, Vol. 2, Generators and Their Potential TheoryImperial College Press, London.Google Scholar
Massey, W. A. (1987). Stochastic orderings for Markov processes on partially ordered spaces. Math. Operat. Res. 12, 350367.Google Scholar
, A. and Stoyan, D. (2002). Comparison Methods for Stochastic Models and Risks. John Wiley, Chichester.Google Scholar
Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations (Appl. Math. Sci. 44). Springer, New York.CrossRefGoogle Scholar
Poulsen, R., Schenk-Hoppé, K. R. and Ewald, C.-O. (2009). Risk minimization in stochastic volatility models: model risk and empirical performance. Quant. Finance 9, 693704.Google Scholar
Protter, P. (1977). Markov solutions of stochastic differential equations. Z. Wahrscheinlichkeitsth. 41, 3958.Google Scholar
Protter, P. (2005). Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin.Google Scholar
Rüschendorf, L. (2008). On a comparison result for Markov processes. J. Appl. Prob. 45, 279286.CrossRefGoogle Scholar
Röschendorf, L. and Wolf, V. (2011). Comparison of Markov processes via infinitesimal generators. Statist. Decisions 28, 151168.Google Scholar
Sato, K.-I. (1999). Lévy Processes and Infinitely Divisible Distributions (Camb. Studies Adv. Math. 68) Cambridge University Press.Google Scholar
Schilling, R. L. and Schnurr, A. (2010). The symbol associated with the solution of a stochastic differential equation. Electron. J. Prob. 15, 13691393.Google Scholar
Schnurr, J. A. (2009). The symbol of a Markov semimartingale. Doctoral Thesis, TU Dresden.Google Scholar
Shaked, M. and Shanthikumar, J. G. (1994). {Stochastic Orders and Their Applications. Academic Press, Boston, MA.Google Scholar
Tong, Y. L. (1980). Probability Inequalities in Mulitvariate Distributions. Academic press, New York.Google Scholar
Van Casteren, J. A. (2011). Markov Processes, Feller Semigroups and Evolution Equations. World Scientific, Hackensack, NJ.Google Scholar
Wang, J.-M. (2013). Stochastic comparison for Lévy-type processes. J. Theoret. Prob. 26, 9971019.Google Scholar