Skip to main content
×
×
Home

Asymptotic shape and the speed of propagation of continuous-time continuous-space birth processes

  • Viktor Bezborodov (a1), Luca Di Persio (a1), Tyll Krueger (a2), Mykola Lebid (a3) and Tomasz Ożański (a2)...
Abstract

We formulate and prove a shape theorem for a continuous-time continuous-space stochastic growth model under certain general conditions. Similar to the classical lattice growth models, the proof makes use of the subadditive ergodic theorem. A precise expression for the speed of propagation is given in the case of a truncated free-branching birth rate.

Copyright
Corresponding author
* Postal address: Department of Computer Science, The University of Verona, Strada le Grazie 15, Verona, 37134, Italy.
** Email address: viktor.bezborodov@univr.it
*** Postal address: Department of Computer Science and Engineering, Wrocław University of Technology, Janiszewskiego 15, Wrocław, 50-372, Poland.
**** Postal address: Department of Biosystems Science and Engineering, ETH Zürich, D-BSSE, Mattenstrasse 26, Basel, 4058, Switzerland.
References
Hide All
[1] Auffinger, A., Damron, M. and Hanson, J. (2017). 50 Years of First-Passage Percolation (University Lecture Series 68). American Mathematical Society.
[2] Bezborodov, V. (2015). Spatial birth-and-death Markov dynamics of finite particle systems. Preprint. Available at https://arxiv.org/abs/1507.05804.
[3] Biggins, J. D. (1995). The growth and spread of the general branching random walk. Ann. Appl. Prob. 5, 10081024.
[4] Burke, C. J. and Rosenblatt, M. (1958). A Markovian function of a Markov chain. Ann. Math. Statist. 29, 11121122.
[5] Deijfen, M. (2003). Asymptotic shape in a continuum growth model. Adv. Appl. Prob. 35, 303318.
[6] Durrett, R. (1983). Maxima of branching random walks. Z. Wahrscheinlichkeitsth. 62, 165170.
[7] Durrett, R. (1988). Lecture Notes on Particle Systems and Percolation. Wadsworth & Brooks/Cole, Pacific Grove, CA.
[8] Eden, M. (1961). A two-dimensional growth process. In Proc. 4th Berkeley Symp. Math. Statist. Prob., Vol. IV, University of California Press, Berkeley, CA, pp. 223239.
[9] Eibeck, A. and Wagner, W. (2003). Stochastic interacting particle systems and nonlinear kinetic equations. Ann. Appl. Prob. 13, 845889.
[10] Fournier, N. and Méléard, S. (2004). A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Prob. 14, 18801919.
[11] Garet, O. and Marchand, R. (2012). Asymptotic shape for the contact process in random environment. Ann. Appl. Prob. 22, 13621410.
[12] Gouéré, J.-B. and Marchand, R. (2008). Continuous first-passage percolation and continuous greedy paths model: linear growth. Ann. Appl. Prob. 18, 23002319.
[13] Howard, C. D. and Newman, C. M. (1997). Euclidean models of first-passage percolation. Prob. Theory Relat. Fields 108, 153170.
[14] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn. Springer, New York.
[15] Kesten, H. (1987). Percolation theory and first-passage percolation. Ann. Prob. 15, 12311271.
[16] Kondratiev, Y. G. and Kutoviy, O. V. (2006). On the metrical properties of the configuration space. Math. Nachr. 279, 774783.
[17] Liggett, T. M. (1985). An improved subadditive ergodic theorem. Ann. Prob. 13, 12791285.
[18] Liggett, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin.
[19] Massoulié, L. (1998). Stability results for a general class of interacting point processes dynamics, and applications. Stoch. Process. Appl. 75, 130.
[20] Møller, J. and Waagepetersen, R. (2004). Statistical Inference and Simulation for Spatial Point Processes. Chapman & Hall/CRC, Boca Raton, FL.
[21] Richardson, D. (1973). Random growth in a tessellation. Proc. Camb. Philos. Soc. 74, 515528.
[22] Röckner, M. and Schied, A. (1999). Rademacher's theorem on configuration spaces and applications. J. Funct. Anal. 169, 325356.
[23] Shi, Z. (2015). Branching Random Walks (Lecture Notes Math. 2151) Springer, Cham.
[24] Tartarini, D. and Mele, E. (2016). Adult stem cell therapies for wound healing: biomaterials and computational models. Frontiers Bioeng. Biotech. 3, 10.3389/fbioe.2015.00206.
[25] Treloar, K. et al. (2013). Multiple types of data are required to identify the mechanisms influencing the spatial expansion of melanoma cell colonies. BMC Systems Biol. 7, 137.
[26] Vo, B. N., Drovandi, C. C., Pettitt, A. N. and Pettet, G. J. (2015). Melanoma cell colony expansion parameters revealed by approximate Bayesian computation. PLOS Comput. Biol. 11, e1004635.
[27] Waclaw, B. et al. (2015). A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature 525, 261264.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Probability
  • ISSN: 0001-8678
  • EISSN: 1475-6064
  • URL: /core/journals/advances-in-applied-probability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed