Skip to main content Accessibility help
×
Home

Coalescence times for the branching process

  • Amaury Lambert (a1)

Abstract

We investigate the distribution of the coalescence time (most recent common ancestor) for two individuals picked at random (uniformly) in the current generation of a branching process founded t units of time ago, in both the discrete and continuous (time and state-space) settings. We obtain limiting distributions as t→∞ in the subcritical case. In the continuous setting, these distributions are specified for quadratic branching mechanisms (corresponding to Brownian motion and Brownian motion with positive drift), and we also extend our results for two individuals to the joint distribution of coalescence times for any finite number of individuals sampled in the current generation.

Copyright

Corresponding author

Postal address: Unit of Mathematical Evolutionary Biology, Fonctionnement et Evolution des Systèmes Ecologiques UMR 7625, Ecole Normale Supérieure, 46, rue d'Ulm, F-75230 Paris Cedex 05, France. Email address: alambert@ens.fr

References

Hide All
[1] Aldous, D. J. (1999). Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists. Bernoulli 5, 348.
[2] Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Springer, New York.
[3] Bertoin, J. and Le Gall, J. F. (2000). The Bolthausen–Sznitman coalescent and the genealogy of continuous-state branching processes. Prob. Theory Relat. Fields 117, 249266.
[4] Bingham, N. H. (1976). Continuous branching processes and spectral positivity. Stoch. Process. Appl. 4, 217242.
[5] Bolthausen, E. and Sznitman, A. S. (1998). On Ruelle's probability cascades and an abstract cavity method. Commun. Math. Phys. 197, 247276.
[6] Evans, S. N. and Pitman, J. (1998). Construction of Markovian coalescents. Ann. Inst. H. Poincaré Prob. Statist. 34, 339383.
[7] Grey, D. R. (1974). Asymptotic behaviour of continuous-time, continuous state-space branching processes. J. Appl. Prob. 11, 669677.
[8] Heathcote, C. R., Seneta, E. and Vere-Jones, D. (1967). A refinement of two theorems in the theory of branching processes. Teor. Veroyat. Primen. 12, 341346.
[9] Kingman, J. F. C. (1982). The coalescent. Stoch. Process. Appl. 13, 235248.
[10] Kolmogorov, A. N. (1938). Zur Lösung einer biologischen Aufgabe. Commun. Math. Mech. Chebyshev Univ. Tomsk 2, 16.
[11] Lambert, A. (2001). Arbres, excursions et processus de Lévy complètement asymétriques. Doctoral Thesis, Université Pierre et Marie Curie, Paris.
[12] Lambert, A. (2002). The genealogy of continuous-state branching processes with immigration. Prob. Theory Relat. Fields 122, 4270.
[13] Lamperti, J. (1967). Continuous-state branching processes. Bull. Am. Math. Soc. 73, 382386.
[14] Le Gall, J. F. and Le Jan, Y. (1998). Branching processes in Lévy processes: the exploration process. Ann. Prob. 26, 213252.
[15] Lyons, R., Pemantle, R. and Peres, Y. (1995). Conceptual proofs of L log L criteria for mean behavior of branching processes. Ann. Prob. 23, 11251138.
[16] Möhle, M. and Sagitov, S. (2001). A classification of coalescent processes for haploid exchangeable population models. Ann. Prob. 29, 15471562.
[17] O'Connell, N. (1995). The genealogy of branching processes and the age of our most recent common ancestor. Adv. Appl. Prob. 27, 418442.
[18] Schweinsberg, J. (2003). Coalescent processes obtained from supercritical Galton–Watson processes. Stoch. Process. Appl. 106, 107139.
[19] Seneta, E. and Vere-Jones, D. (1966). On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states. J. Appl. Prob. 3, 403434.
[20] Yaglom, A. M. (1947). Certain limit theorems of the theory of branching stochastic processes. Dokl. Akad. Nauk. SSSR 56, 795798 (in Russian).

Keywords

MSC classification

Coalescence times for the branching process

  • Amaury Lambert (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed