[1]
Anantharam, V. (1989). Threshold phenomena in the transient behaviour of Markovian models of communication networks and databases. Queueing Systems Theory Appl. 5, 77–98.

[2]
Baxendale, P. H. (2005). Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann. Appl. Prob.
15, 700–738.

[3]
Berenhaut, K. S. and Lund, R. (2001). Geometric renewal convergence rates from hazard rates. J. Appl. Prob.
38, 180–194.

[4]
Berenhaut, K. S. and Lund, R (2002). Renewal convergence rates for DHR and NWU lifetimes. Prob. Eng. Inf. Sci.
16, 67–84.

[5]
Blanc, J. P. C. (1985). The relaxation time of two queueing systems in series. Commun. Statist. Stoch. Models
1, 1–16.

[6]
Callaert, H. and Keilson, J. (1973). On exponential ergodicity and spectral structure for birth–death processes. I. Stoch. Process. Appl.
1, 187–216.

[7]
Chafai, D. and Joulin, A. (2013). Intertwining and commutation relations for birth–death processes. Bernoulli
19, 1855–1879.

[8]
Chen, M.-F. (1991). Exponential *L*
^{2}-convergence and *L*
^{2}-spectral gap for Markov processes. Acta Math. Sinica (N.S.)
7, 19–37.

[9]
Chen, M.-F. (1996). Estimation of spectral gap for Markov chains. Acta Math. Sinica (N.S.)
12, 337–360.

[10]
Chen, M.-F. (2005). Eigenvalues, Inequalities, and Ergodic Theory. Springer, London.

[11]
Chen, M.-F. (2010). Speed of stability for birth–death processes. Front. Math. China
5, 379–515.

[12]
Daduna, H. and Szekli, R. (1995). Dependencies in Markovian networks. Adv. Appl. Prob.
27, 226–254.

[13]
Daduna, H. and Szekli, R. (1996). A queueing theoretical proof of increasing property of Pólya frequency functions. Statist. Prob. Lett.
26, 233–242.

[14]
Daduna, H. and Szekli, R. (2008). Impact of routeing on correlation strength in stationary queueing network processes. J. Appl. Prob.
45, 846–878.

[15]
Daduna, H., Kulik, R., Sauer, C. and Szekli, R. (2006). Dependence ordering for queueing networks with breakdown and repair. Prob. Eng. Inf. Sci.
20, 575–594.

[16]
Diaconis, P. and Fill, J. A. (1990). Examples for the theory of strong stationary duality with countable state spaces. Prob. Eng. Inf. Sci.
4, 157–180.

[17]
Diaconis, P. and Fill, J. A. (1990). Strong stationary times via a new form of duality. Ann. Prob.
18, 1483–1522.

[18]
Diaconis, P. and Miclo, L. (2009). On times to quasi-stationarity for birth and death processes. J. Theoret. Prob.
22, 558–586.

[19]
Diaconis, P. and Stroock, D. (1991). Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Prob.
1, 36–61.

[20]
Dieker, A. B. and Warren, J. (2010). Series Jackson networks and noncrossing probabilities. Math. Operat. Res.
35, 257–266.

[21]
Fayolle, G., Malyshev, V. A., Meńshikov, M. V. and Sidorenko, A. F. (1993). Lyapounov functions for Jackson networks. Math. Operat. Res.
18, 916–927.

[22]
Fill, J. A. (1991). Eigenvalue bounds on convergence to stationarity for nonreversible Markov chains, with an application to the exclusion process. Ann. Appl. Prob.
1, 62–87.

[23]
Fill, J. A. (1991). Time to stationarity for a continuous-time Markov chain. Prob. Eng. Inf. Sci.
5, 61–76.

[24]
Fill, J. A. (1992). Strong stationary duality for continuous-time Markov chains. I. Theory. J. Theoret. Prob.
5, 45–70.

[25]
Fill, J. A. (2009). On hitting times and fastest strong stationary times for skip-free and more general chains. J. Theoret. Prob.
22, 587–600.

[26]
Hart, A. G., Martı´nez, S. and San Martin, J. (2003). The λ-classification of continuous-time birth-and-death processes. Adv. Appl. Prob.
35, 1111–1130.

[27]
Hordijk, A. and Spieksma, F. (1992). On ergodicity and recurrence properties of a Markov chain with an application to an open Jackson network. Adv. Appl. Prob.
24, 343–376.

[28]
Ignatiouk-Robert, I. (2006). On the spectrum of Markov semigroups via sample path large deviations. Prob. Theory Relat. Fields
134, 44–80.

[29]
Ignatiouk-Robert, I. and Tibi, D. (2012). Explicit Lyapunov functions and estimates of the essential spectral radius for Jackson networks. Preprint. Available at http://arxiv.org/abs/1206.3066v1.
[30]
Iscoe, I. and McDonald, D. (1994). Asymptotics of exit times for Markov Jump processes. II. Applications to Jackson networks. Ann. Prob.
22, 2168–2182.

[31]
Kartashov, N. V. (2000). Determination of the spectral index of ergodicity of a birth-and-death process. Ukrainian Math. J.
52, 1018–1028.

[32]
Kijima, M. (1992). Evaluation of the decay parameter for some specialized birth–death processes. J. Appl. Prob.
29, 781–791.

[33]
Kroese, D. P., Scheinhardt, W. R. W. and Taylor, P. G. (2004). Spectral properties of the tandem Jackson network, seen as a quasi-birth-and-death process. Ann. Appl. Prob.
14, 2057–2089.

[34]
Lawler, G. F. and Sokal, A. D. (1988). Bounds on the *L*
^{2} spectrum for Markov chains and Markov processes: a generalization of Cheeger's inequality. Trans. Amer. Math. Soc.
309, 557–580.

[35]
Liggett, T. M. (1989). Exponential *L*
^{2} convergence of attractive reversible nearest particle systems. Ann. Prob.
17, 403–432.

[36]
Liu, W. and Ma, Y. (2009). Spectral gap and convex concentration inequalities for birth–death processes. Ann. Inst. H. Poincaré Prob. Statist.
45, 58–69.

[37]
Lorek, P. and Szekli, R. (2012). Strong stationary duality for Möbius monotone Markov chains. Queueing Systems
71, 79–95.

[38]
Lund, R. B., Meyn, S. P. and Tweedie, R. L. (1996). Computable exponential convergence rates for stochastically ordered Markov processes. Ann. Appl. Prob.
6, 218–237.

[39]
Malyshev, V. A. and Spieksma, F. M. (1995). Intrinsic convergence rate of countable Markov chains. Markov Processes Relat. Fields
1, 203–266.

[40]
Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer, London.

[41]
Roberts, G. O. and Tweedie, R. L. (2000). Rates of convergence of stochastically monotone and continuous time Markov models. J. Appl. Prob.
37, 359–373.

[42]
Rolski, T., Schmidli, H., Schmidt, V. and Teugels, J. (1999). Stochastic Processes for Insurance and Finance. John Wiley, Chichester.

[43]
Sauer, C. (2006). Stochastic product form networks with unreliable nodes: analysis of performance and availability. , Hamburg University.

[44]
Sauer, C. and Daduna, H. (2003). Availability formulas and performance measures for separable degradable networks. Econom. Quality Control
18, 165–194.

[45]
Sirl, D., Zhang, H. and Pollett, P. (2007). Computable bounds for the decay parameter of a birth–death process. J. Appl. Prob.
44, 476–491.

[46]
Van Doorn, E. A. (1981). Stochastic Monotonicity and Queueing Applications of Birth–Death Processes (Lecture Notes Statis. 4). Springer, New York.

[47]
Van Doorn, E. A. (1985). Conditions for exponential ergodicity and bounds for the decay parameter of a birth–death process. Adv. Appl. Prob.
17, 514–530.

[48]
Van Doorn, E. A. (2002). Representations for the rate of convergence of birth–death processes. Theory Prob. Math. Statist.
65, 37–43.

[49]
Van Doorn, E. A., Zeifman, A. I. and Panfilova, T. L. (2010). Bounds and asymptotics for the rate of convergence of birth–death processes. Theory Prob. Appl.
54, 97–113.

[50]
Vere-Jones, D. (1963). On the spectra of some linear operators associated with queueing systems. Z. Wahrscheinlichkeitsth.
2, 12–21.

[51]
Wu, L. (2004). Essential spectral radius for Markov semigroups. I. Discrete time case. Prob. Theory Relat. Fields
128, 255–321.