Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-20T01:48:42.325Z Has data issue: false hasContentIssue false

Contagions in random networks with overlapping communities

Published online by Cambridge University Press:  21 March 2016

Emilie Coupechoux*
Affiliation:
Université Nice Sophia Antipolis and INRIA-ENS
Marc Lelarge*
Affiliation:
INRIA-ENS
*
Postal address: Laboratoire I3S, Université Nice Sophia Antipolis, CS 40121, 06903 Sophia Antipolis Cedex, France. Email address: emilie.coupechoux@gmail.com
∗∗ Postal address: INRIA-ENS, 23, avenue d'Italie, CS 81321, 75214 Paris Cedex 13, France.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider a threshold epidemic model on a clustered random graph model obtained from local transformations in an alternating branching process that approximates a bipartite graph. In other words, our epidemic model is such that an individual becomes infected as soon as the proportion of his/her infected neighbors exceeds the threshold q of the epidemic. In our random graph model, each individual can belong to several communities. The distributions for the community sizes and the number of communities an individual belongs to are arbitrary. We consider the case where the epidemic starts from a single individual, and we prove a phase transition (when the parameter q of the model varies) for the appearance of a cascade, i.e. when the epidemic can be propagated to an infinite part of the population. More precisely, we show that our epidemic is entirely described by a multi-type (and alternating) branching process, and then we apply Sevastyanov's theorem about the phase transition of multi-type Galton-Watson branching processes. In addition, we compute the entries of the mean progeny matrix corresponding to the epidemic. The phase transition for the contagion is given in terms of the largest eigenvalue of this matrix.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2015 

References

Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Springer, New York.CrossRefGoogle Scholar
Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286, 509512.CrossRefGoogle ScholarPubMed
Bender, E. A. and Canfield, E. R. (1978). The asymptotic number of labeled graphs with given degree sequences. J. Combinatorial Theory Ser. A 24, 296307.CrossRefGoogle Scholar
Blume, L. E. (1995). The statistical mechanics of best-response strategy revision. Games Econom. Behav. 11, 111145.CrossRefGoogle Scholar
Bollobás, B., Janson, S. and Riordan, O. (2011). Sparse random graphs with clustering. Random Structures Algorithms 38, 269323.CrossRefGoogle Scholar
Britton, T., Deijfen, M., Lagerås, A. N. and Lindholm, M. (2008). Epidemics on random graphs with tunable clustering. J. Appl. Prob. 45, 743756.CrossRefGoogle Scholar
Coupechoux, E. and Lelarge, M. (2011). Impact of clustering on diffusions and contagions in random networks. In Network Games, Control and Optimization (NetGCoop, 2011), IEEE, New York, pp. 112118.Google Scholar
Coupechoux, E. and Lelarge, M. (2012). How clustering affects epidemics in random networks. Preprint. Available at http://arxiv.org/abs/1202.4974.Google Scholar
Darling, R. W. R. and Norris, J. R. (2008). Differential equation approximations for Markov chains. Prob. Surveys 5, 3779.CrossRefGoogle Scholar
Gan, G. and Bain, L. J. (1995). Distribution of order statistics for discrete parents with applications to censored sampling. J. Statist. Planning Infer. 44, 3746.CrossRefGoogle Scholar
Gleeson, J. P. (2008). Cascades on correlated and modular random networks. Phys. Rev. E 77, 046117.CrossRefGoogle ScholarPubMed
Guillaume, J.-L. and Latapy, M. (2006). Bipartite graphs as models of complex networks. Physica A 371, 795813.CrossRefGoogle Scholar
Hackett, A., Melnik, S. and Gleeson, J. P. (2011). Cascades on a class of clustered random networks. Phys. Rev. E 83, 056107.CrossRefGoogle ScholarPubMed
Harris, T. E. (1963). The Theory of Branching Processes. Springer, Berlin.CrossRefGoogle Scholar
Janson, S. (2009). On percolation in random graphs with given vertex degrees. Electron. J. Prob. 14, 87118.CrossRefGoogle Scholar
Kleinberg, J. (2007). Cascading behavior in networks: algorithmic and economic issues. In Algorithmic Game Theory, Cambridge University Press, pp. 613632.CrossRefGoogle Scholar
Lelarge, M. (2012). Diffusion and cascading behavior in random networks. Games Econom. Behav. 75, 752-775.CrossRefGoogle Scholar
Mode, C. J. (1971). Multitype Branching Processes – Theory and Applications. American Elsevier, New York.Google Scholar
Molloy, M. and Reed, B. (1995). A critical point for random graphs with a given degree sequence. Random Structures Algorithms 6, 161179.CrossRefGoogle Scholar
Morris, S. (2000). Contagion. Rev. Econom. Stud. 67, 5778.CrossRefGoogle Scholar
Newman, M. E. J. (2002). Spread of epidemic disease on networks. Phys. Rev. E 66, 016128.CrossRefGoogle ScholarPubMed
Newman, M. E. J. (2003). Properties of highly clustered networks. Phys. Rev. E 68, 026121.CrossRefGoogle ScholarPubMed
Newman, M. E. J. (2003). Random graphs as models of networks. In Handbook of Graphs and Networks, Wiley-VCH, Weinheim, pp. 3568.Google Scholar
Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Rev. 45, 167256.CrossRefGoogle Scholar
Newman, M. E. J., Strogatz, S. H. and Watts, D. J. (2001). Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118.CrossRefGoogle ScholarPubMed
Sevastyanov, B. A. (1951). The theory of branching random processes. Uspehi Matem. Nauk (N.S.) 6, 4799.Google Scholar
Vega-Redondo, F. (2007). Complex Social Networks (Econometric Soc. Monogr. 44). Cambridge University Press.CrossRefGoogle Scholar
Von Bahr, B. and Martin-Löf, A. (1980). Threshold limit theorems for some epidemic processes. Adv. Appl. Prob. 12, 319349.CrossRefGoogle Scholar
Watts, D. J. (2002). A simple model of global cascades on random networks. Proc. Nat. Acad. Sci. USA 99, 57665771,CrossRefGoogle ScholarPubMed
Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature 393, 440442.CrossRefGoogle ScholarPubMed