[1]
Appell, , Banaś, and Merentes, (2014). Bounded Variation and Around (De Gruyter Ser. Nonlinear Anal. Appl. **17**). De Gruyter, Berlin.

[2]
Barbour, A. D. (1990). Stein's method for diffusion approximations. Prob. Theory Relat. Fields
84, 297–322.

[3]
Barbour, A. D., Ethier, S. N. and Griffiths, R. C. (2000). A transition function expansion for a diffusion model with selection. Ann. Appl. Prob.
10, 123–162.

[4]
Bentkus, V. (2003). On the dependence of the Berry–Esseen bound on dimension. J. Statist. Planning Infer.
113, 385–402.

[5]
Bhaskar, A., Clark, A. G. and Song, Y. S. (2014). Distortion of genealogical properties when the sample is very large. Proc. Nat. Acad. Sci. USA
111, 2385–2390.

[6]
Bhaskar, A., Kamm, J. A. and Song, Y. S. (2012). Approximate sampling formulae for general finite-alleles models of mutation. Adv. Appl. Prob.
44, 408–428.

[7]
Cannings, C. (1974). The latent roots of certain Markov chains arising in genetics: a new approach. I. Haploid models. Adv. Appl. Prob.
6, 260–290.

[8]
Chatterjee, S. (2014). A short survey of Stein's method. In Proceedings of the International Congress of Mathematicians, Seoul 2014, Vol. IV, *Invited Lectures*. Kyung Moon, Seoul, pp. 1–24.

[9]
Chatterjee, S. and Meckes, E. (2008). Multivariate normal approximation using exchangeable pairs. ALEA Latin Amer. J. Prob. Math. Statist.
4, 257–283.

[10]
Chatterjee, S. and Shao, Q.-M. (2011). Nonnormal approximation by Stein's method of exchangeable pairs with application to the Curie–Weiss model. Ann. Appl. Prob.
21, 464–483.

[11]
Chatterjee, S., Fulman, J. and Röllin, A. (2011). Exponential approximation by Stein's method and spectral graph theory. ALEA Latin Amer. J. Prob. Math. Statist.
8, 197–223.

[12]
Chen, L. H. Y., Goldstein, L. and Shao, Q.-M. (2011). Normal Approximation by Stein's Method. Springer, Heidelberg.

[14]
Döbler, C. (2015). Stein's method of exchangeable pairs for the beta distribution and generalizations. Electron. J. Prob.
20, 109.

[15]
Ethier, S. N. (1976). A class of degenerate diffusion processes occurring in population genetics. Commun. Pure Appl. Math.
29, 483–493.

[16]
Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. John Wiley, New York.

[17]
Ethier, S. N. and Kurtz, T. G. (1992). On the stationary distribution of the neutral diffusion model in population genetics. Ann. Appl. Prob.
2, 24–35.

[18]
Ethier, S. N. and Norman, M. F. (1977). Error estimate for the diffusion approximation of the Wright–Fisher model. Proc. Nat. Acad. Sci. USA
74, 5096–5098.

[19]
Fu, Y.-X. (2006). Exact coalescent for the Wright–Fisher model. Theoret. Pop. Biol.
69, 385–394.

[20]
Fulman, J. and Ross, N. (2013). Exponential approximation and Stein's method of exchangeable pairs. ALEA Latin Amer. J. Prob. Math. Statist.
10, 1–13.

[21]
Goldstein, L. and Reinert, G. (2013). Stein's method for the beta distribution and the Pólya–Eggenberger urn. J. Appl. Prob.
50, 1187–1205.

[22]
Gorham, J., Duncan, A. B., Vollmer, S. J. and Mackey, L. (2016). Measuring sample quality with diffusions. Preprint. Available at https://arxiv.org/abs/1611.06972.
[23]
Götze, F. (1991). On the rate of convergence in the multivariate CLT. Ann. Prob.
19, 724–739.

[24]
Griffiths, R. C. and Tavare, S. (1994). Simulating probability distributions in the coalescent. Theoret. Pop. Biol.
46, 131–159.

[25]
Griffiths, R. C. and Li, W.-H. (1983). Simulating allele frequencies in a population and the genetic differentiation of populations under mutation pressure. Theoret. Pop. Biol.
23, 19–33.

[26]
Kingman, J. F. C. (1982). Exchangeability and the evolution of large populations. In Exchangeability in Probability and Statistics (Rome, 1981), North-Holland, Amsterdam, pp. 97–112.

[27]
Kingman, J. F. C. (1982). On the genealogy of large populations. In Essays in Statistical Science (*J. Appl. Prob.* Spec. Vol. **19A**), Applied Probability Trust, Sheffield, pp. 27–43.

[28]
Kingman, J. F. C. (1982). The coalescent. Stoch. Process. Appl.
13, 235–248.

[29]
Lessard, S. (2007). An exact sampling formula for the Wright–Fisher model and a solution to a conjecture about the finite-island model. Genetics
177, 1249–1254.

[30]
Lessard, S. (2010). Recurrence equations for the probability distribution of sample configurations in exact population genetics models. J. Appl. Prob.
47, 732–751.

[31]
Mahmoud, H. M. (2009). Pólya Urn Models. CRC, Boca Raton, FL.

[32]
Möhle, M. (2000). Total variation distances and rates of convergence for ancestral coalescent processes in exchangeable population models. Adv. Appl. Prob.
32, 983–993.

[33]
Möhle, M. (2004). The time back to the most recent common ancestor in exchangeable population models. Adv. Appl. Prob.
36, 78–97.

[34]
Möhle, M. and Sagitov, S. (2001). A classification of coalescent processes for haploid exchangeable population models. Ann. Prob.
29, 1547–1562.

[35]
Möhle, M. and Sagitov, S. (2003). Coalescent patterns in diploid exchangeable population models. J. Math. Biol.
47, 337–352.

[36]
Morvan, J.-M. (2008). Generalized Curvatures (Geom. Comput. **2**). Springer, Berlin.

[37]
Mukhopadhyay, S. N. (2012). Higher Order Derivatives (Chapman & Hall/CRC Monogr. Surveys Pure Appl. Math. **144**). CRC, Boca Raton, FL.

[38]
Peköz, E. A., Röllin, A. and Ross, N. (2017). Joint degree distributions of preferential attachment random graphs. Adv. Appl. Prob.
49, 368–387.

[39]
Reinert, G. and Röllin, A. (2009). Multivariate normal approximation with Stein's method of exchangeable pairs under a general linearity condition. Ann. Prob.
37, 2150–2173.

[40]
Rinott, Y. and Rotar, V. (1997). On coupling constructions and rates in the CLT for dependent summands with applications to the antivoter model and weighted *U*-statistics. Ann. Appl. Prob.
7, 1080–1105.

[41]
Röllin, A. (2008). A note on the exchangeability condition in Stein's method. Statist. Prob. Lett.
78, 1800–1806.

[42]
Ross, N. (2011). Fundamentals of Stein's method. Prob. Surv.
8, 210–293.

[43]
Russell, A. M. (1973). Functions of bounded *k*th variation. Proc. London Math. Soc. (3)
26, 547–563.

[44]
Shiga, T. (1981). Diffusion processes in population genetics. J. Math. Kyoto Univ.
21, 133–151.

[45]
Stein, C. (1972). bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. II, *Probability Theory*. University of California Press, Berkeley, pp. 583–602.

[46]
Stein, C. (1986). Approximate Computation of Expectations (Inst. Math. Statist. Lecture Notes Monogr. Ser. **7**). Institute of Mathematical Statistics, Hayward, CA.

[47]
Tavaré, S. (1984). Line-of-descent and genealogical processes, and their applications in population genetics models. Theoret. Pop. Biol.
26, 119–164.

[48]
Wright, S. (1949). Adaptation and selection. In Genetics, Paleontology and Evolution, Princeton University Press, pp. 365–389.