Skip to main content Accessibility help

Extremes for the inradius in the Poisson line tessellation

  • Nicolas Chenavier (a1) and Ross Hemsley (a2)


A Poisson line tessellation is observed in the window Wρ := B(0, π-1/2ρ1/2) for ρ > 0. With each cell of the tessellation, we associate the inradius, which is the radius of the largest ball contained in the cell. Using the Poisson approximation, we compute the limit distributions of the largest and smallest order statistics for the inradii of all cells whose nuclei are contained in Wρ as ρ goes to ∞. We additionally prove that the limit shape of the cells minimising the inradius is a triangle.


Corresponding author

* Postal address: LMPA Joseph Liouville, Université du Littoral Côte d'Opale, 50 rue Ferdinand Buisson, BP 699, F-62228 Calais Cedex, France. Email address:
** Postal address: Inria, BP 93, 06902 Sophia-Antipolis Cedex, France.


Hide All
[1]Beermann, M.,Redenbach, C. and Thäle, C. (2014).Asymptotic shape of small cells.Math. Nachr. 287,737747.
[2]Calka, P. (2003).Precise formulae for the distributions of the principal geometric characteristics of the typical cells of a two-dimensional Poisson–Voronoi tessellation and a Poisson line process.Adv. Appl. Prob. 35,551562.
[3]Calka, P. and Chenavier, N. (2014).Extreme values for characteristic radii of a Poisson–Voronoi tessellation.Extremes 17,359385.
[4]Charikar, M. S. (2002).Similarity estimation techniques from rounding algorithms. In Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing,ACM,New York, pp.380388.
[5]Chenavier, N. (2014).A general study of extremes of stationary tessellations with examples.Stoch. Process. Appl. 124,29172953.
[6]De Haan, L. and Ferreira, A. (2006).Extreme Value Theory: An Introduction.Springer,New York.
[7]Goudsmit, S. (1945).Random distribution of lines in a plane.Rev. Modern Phys. 17,321322.
[8]Heinrich, L. (2009).Central limit theorems for motion-invariant Poisson hyperplanes in expanding convex bodies.Rend. Circ. Mat. Palermo (2) Suppl. 81,187212.
[9]Heinrich, L.,Schmidt, H. and Schmidt, V. (2006).Central limit theorems for Poisson hyperplane tessellations.Ann. Appl. Prob. 16,919950.
[10]Hsing, T. (1988).On the extreme order statistics for a stationary sequence.Stoch. Process. Appl. 29,155169.
[11]Hug, D. and Schneider, R. (2014).Approximation properties of random polytopes associated with Poisson hyperplane processes.Adv. Appl. Prob. 46,919936.
[12]Hug, D.,Reitzner, M. and Schneider, R. (2004).The limit shape of the zero cell in a stationary Poisson hyperplane tessellation.Ann. Prob. 32,11401167.
[13]Ju, L.,Gunzburger, M. and Zhao, W. (2006).Adaptive finite element methods for elliptic PDEs based on conforming centroidal Voronoi–Delaunay triangulations.SIAM J. Sci. Comput. 28,20232053.
[14]Leadbetter, M. R. (1974).On extreme values in stationary sequences.Z. Wahrscheinlichkeitsth. 28,289303.
[15]Leadbetter, M. R. and Rootzén, H. (1998).On extreme values in stationary random fields. In Stochastic Processes and Related Topics,Birkhäuser,Boston, MA, pp.275285.
[16]Miles, R. E. (1964).Random polygons determined by random lines in a plane.Proc. Nat. Acad. Sci. USA 52,901907.
[17]Miles, R. E. (1964).Random polygons determined by random lines in a plane. II.Proc. Nat. Acad. Sci. USA 52,11571160.
[18]Møller, J. and Waagepetersen, R. P. (2004).Statistical Inference and Simulation for Spatial Point Processes (Monogr. Statist. Appl. Prob.100).Chapman & Hall/CRC,Boca Raton, FL.
[19]Penrose, M. (2003).Random Geometric Graphs.Oxford Univeristy Press.
[20]Plan, Y. and Vershynin, R. (2014).Dimension reduction by random hyperplane tessellations.Discrete Comput. Geometry 51,438461.
[21]Resnick, S. I. (1987).Extreme Values, Regular Variation, and Point Processes.Springer,New York.
[22]Santaló, L. A. (2004).Integral Geometry and Geometric Probability,2nd edn.Cambridge University Press.
[23]Schneider, R. and Weil, W. (2008).Stochastic and Integral Geometry.Springer,Berlin.
[24]Schulte, M. and Thäle, C. (2012).The scaling limit of Poisson-driven order statistics with applications in geometric probability.Stoch. Process. Appl. 122,40964120.
[25]Schulte, M. and Thäle, C. (2016).Poisson point process convergence and extreme values in stochastic geometry. In Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener–Itô Chaos Expansions and Stochastic Geometry,Springer,Cham.


MSC classification

Extremes for the inradius in the Poisson line tessellation

  • Nicolas Chenavier (a1) and Ross Hemsley (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.