Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T07:50:11.163Z Has data issue: false hasContentIssue false

Extremes of multitype branching random walks: heaviest tail wins

Published online by Cambridge University Press:  07 August 2019

Ayan Bhattacharya*
Affiliation:
Centrum Wiskunde & Informatica
Krishanu Maulik*
Affiliation:
Indian Statistical Institute, Kolkata
Zbigniew Palmowski*
Affiliation:
Wrocław University of Science and Technology
Parthanil Roy*
Affiliation:
Indian Statistical Institute, Bangalore
*
*Postal address: Stochastics group, Centrum Wiskunde & Informatica, Amsterdam, North Holland, 1098 XG, Netherlands.
**Postal address: Statistics and Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India.
***Postal address: Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Ul. Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland.
****Postal address: Statistics and Mathematics Unit, Indian Statistical Institute, 8th Mile, Mysore Road, RVCE Post, Bangalore 560059, India.

Abstract

We consider a branching random walk on a multitype (with Q types of particles), supercritical Galton–Watson tree which satisfies the Kesten–Stigum condition. We assume that the displacements associated with the particles of type Q have regularly varying tails of index $\alpha$ , while the other types of particles have lighter tails than the particles of type Q. In this paper we derive the weak limit of the sequence of point processes associated with the positions of the particles in the nth generation. We verify that the limiting point process is a randomly scaled scale-decorated Poisson point process using the tools developed by Bhattacharya, Hazra, and Roy (2018). As a consequence, we obtain the asymptotic distribution of the position of the rightmost particle in the nth generation.

Type
Original Article
Copyright
© Applied Probability Trust 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addario-Berry, L. and Reed, B. (2009). Minima in branching random walks. Ann. Prob. 37, 10441079.CrossRefGoogle Scholar
Adékon, E. (2013). Convergence in law of the minimum of a branching random walk. Ann. Prob. 41, 13621426.CrossRefGoogle Scholar
Adékon, E., Berestycki, J., Brunet, É. and Shi, Z. (2013). Branching Brownian motion seen from its tip. Prob. Theory Relat. Fields 157, 405451.CrossRefGoogle Scholar
Arguin, L.-P., Bovier, A. and Kistler, N. (2011). Genealogy of extremal particles of branching Brownian motion. Commun. Pure Appl. Math. 64, 16471676.CrossRefGoogle Scholar
Arguin, L.-P., Bovier, A. and Kistler, N. (2012). Poissonian statistics in the extremal process of branching Brownian motion. Ann. Appl. Prob. 22, 16931711.CrossRefGoogle Scholar
Arguin, L.-P., Bovier, A. and Kistler, N. (2013). The extremal process of branching Brownian motion. Prob. Theory Relat. Fields 157, 535574.CrossRefGoogle Scholar
Athreya, K. B. and Ney, P. E. (2004). Branching Processes. Dover Publications, Mineola, NY.Google Scholar
Bérard, J. and Maillard, P. (2014). The limiting process of N-particle branching random walk with polynomial tails. Electron. J. Prob. 19, 17pp.CrossRefGoogle Scholar
Bhattacharya, A., Hazra, R. S. and Roy, P. (2017). Point process convergence for branching random walks with regularly varying steps. Ann. Inst. H. Poincaré Prob. Statist. 53, 802818.CrossRefGoogle Scholar
Bhattacharya, A., Hazra, R. S. and Roy, P. (2018). Branching random walks, stable point processes and regular variation. Stoch. Process. Appl. 128, 182210.CrossRefGoogle Scholar
Biggins, J. D. (1976). The first- and last-birth problems for a multitype age-dependent branching process. Adv. Appl. Prob. 8, 446459.CrossRefGoogle Scholar
Biggins, J. D. and Rahimzadeh Sani, A. (2005). Convergence results on multitype, multivariate branching random walks. Adv. Appl. Prob. 37, 681705.CrossRefGoogle Scholar
Bramson, M. D. (1978). Maximal displacement of branching Brownian motion. Commun. Pure Appl. Math. 31, 531581.CrossRefGoogle Scholar
Bramson, M. (1983). Convergence of solutions of the Kolmogorov equation to travelling waves Mem. Amer. Math. Soc. 44, 190pp Google Scholar
Bramson, M. and Zeitouni, O. (2012). Tightness of the recentered maximum of the two-dimensional discrete Gaussian free field. Commun. Pure Appl. Math. 65, 120.CrossRefGoogle Scholar
Bramson, M., Ding, J. and Zeitouni, O. (2016). Convergence in law of the maximum of the two-dimensional discrete Gaussian free field. Commun. Pure Appl. Math. 69, 62123.CrossRefGoogle Scholar
Das, B., Mitra, A. and Resnick, S. (2013). Living on the multidimensional edge: seeking hidden risks using regular variation. Adv. Appl. Prob. 45, 139163.CrossRefGoogle Scholar
Davydov, Y., Molchanov, I. and Zuyev, S. (2008). Strictly stable distributions on convex cones. Electron. J. Prob. 13, 259321.CrossRefGoogle Scholar
Durrett, R. (1979). Maxima of branching random walks vs. independent random walks. Stoch. Process. Appl. 9, 117135.CrossRefGoogle Scholar
Durrett, R. (1983). Maxima of branching random walks. Z. Wahrscheinlichkeitsth. 62, 165170.CrossRefGoogle Scholar
Fasen, V. and Roy, P. (2016). Stable random fields, point processes and large deviations. Stoch. Process. Appl. 126, 832856.CrossRefGoogle Scholar
Gantert, N. (2000). The maximum of a branching random walk with semiexponential increments. Ann. Prob. 28, 12191229.CrossRefGoogle Scholar
Hammersley, J. M. (1974). Postulates for subadditive processes. Ann. Prob. 2, 652680.CrossRefGoogle Scholar
Hu, Y. and Shi, Z. (2009). Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Prob. 37, 742789.CrossRefGoogle Scholar
Hult, H. and Lindskog, F. (2006). Regular variation for measures on metric spaces. Publ. Inst. Math. (Beograd) (N.S.) 80 (94), 121140.CrossRefGoogle Scholar
Hult, H. and Samorodnitsky, G. (2010). Large deviations for point processes based on stationary sequences with heavy tails. J. Appl. Prob. 47, 140.CrossRefGoogle Scholar
Karlin, S. and Taylor, H. M. (1975). A First Course in Stochastic Processes, 2nd edn. Academic Press, New York-London.Google Scholar
Kesten, H. and Stigum, B. P. (1966). A limit theorem for multidimensional Galton-Watson processes. Ann. Math. Statist. 37, 12111223.CrossRefGoogle Scholar
Kingman, J. F. C. (1975). The first birth problem for an age-dependent branching process. Ann. Prob. 3, 790801.CrossRefGoogle Scholar
Kyprianou, A. E. (1999). A note on branching Lévy processes. Stoch. Process. Appl. 82, 114.CrossRefGoogle Scholar
Lalley, S. P. and Shao, Y. (2016). Maximal displacement of critical branching symmetric stable processes. Ann. Inst. H. Poincaré Prob. Stat. 52, 11611177.CrossRefGoogle Scholar
Lindskog, F., Resnick, S. I. and Roy, J. (2014). Regularly varying measures on metric spaces: hidden regular variation and hidden jumps. Prob. Surveys 11, 270314.CrossRefGoogle Scholar
Madaule, T. (2017). Convergence in law for the branching random walk seen from its tip. J. Theoret. Prob. 30, 2763.CrossRefGoogle Scholar
Maillard, P. (2016). The maximum of a tree-indexed random walk in the big jump domain. ALEA Latin Amer. J. Prob. Math. Statist. 13, 545561.Google Scholar
Mode, C. J. (1971). Multitype Branching Processes. Theory and Applications (Modern Analytic Comput. Meth. Sci. Math. 34). American Elsevier Publishing, New York.Google Scholar
Resnick, S. I. (1987). Extreme Values, Regular Variation, and Point Processes (Applied Probability. A Series of the Applied Probability Trust 4). Springer, New York.CrossRefGoogle Scholar
Resnick, S. I. and Roy, J. (2014). Hidden regular variation of moving average processes with heavy-tailed innovations. J. Appl. Prob. 51A, 267279.CrossRefGoogle Scholar
Subag, E. and Zeitouni, O. (2015). Freezing and decorated Poisson point processes. Commun. Math. Phys. 337, 5592.CrossRefGoogle Scholar