Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-30T04:32:10.141Z Has data issue: false hasContentIssue false

The location of high-degree vertices in weighted recursive graphs with bounded random weights

Published online by Cambridge University Press:  19 January 2024

Bas Lodewijks*
Affiliation:
University of Augsburg
*
*Postal address: Lehrstuhl für Stochastik und ihre Anwendungen, Universität Augsburg, Universitätsstr. 14, 86159 Augsburg, Germany. Email address: bas.lodewijks@uni-a.de

Abstract

We study the asymptotic growth rate of the labels of high-degree vertices in weighted recursive graphs (WRGs) when the weights are independent, identically distributed, almost surely bounded random variables, and as a result confirm a conjecture by Lodewijks and Ortgiese (‘The maximal degree in random recursive graphs with random weights’, preprint, 2020). WRGs are a generalisation of the random recursive tree and directed acyclic graph models, in which vertices are assigned vertex-weights and where new vertices attach to $m\in\mathbb{N}$ predecessors, each selected independently with a probability proportional to the vertex-weight of the predecessor. Prior work established the asymptotic growth rate of the maximum degree of the WRG model, and here we show that there exists a critical exponent $\mu_m$ such that the typical label size of the maximum-degree vertex equals $n^{\mu_m(1+o(1))}$ almost surely as n, the size of the graph, tends to infinity. These results extend results on the asymptotic behaviour of the location of the maximum degree, formerly only known for the random recursive tree model, to the more general weighted multigraph case of the WRG model. Moreover, for the weighted recursive tree model, that is, the WRG model with $m=1$, we prove the joint convergence of the rescaled degree and label of high-degree vertices under additional assumptions on the vertex-weight distribution, and also extend results on the growth rate of the maximum degree obtained by Eslava, Lodewijks, and Ortgiese (Stoch. Process. Appl. 158, 2023).

MSC classification

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addario-Berry, L. and Eslava, L. (2018). High degrees in random recursive trees. Random Structures Algorithms 52, 560575.Google Scholar
Banerjee, S. and Bhamidi, S. (2021). Persistence of hubs in growing random networks. Prob. Theory Relat. Fields 180, 891953.Google Scholar
Borovkov, K. A. and Vatutin, V. A. (2006). On the asymptotic behaviour of random recursive trees in random environments. Adv. Appl. Prob. 38, 10471070.Google Scholar
Borovkov, K. A. and Vatutin, V. A. (2006). Trees with product-form random weights. In Fourth Colloquium on Mathematics and Computer Science (Discrete Math. Theoret. Comput. Sci. Proc. AG), DMTCS, Strasbourg, pp. 423–426.Google Scholar
Daley, D. J. and Vere-Jones, D. (2008). An Introduction to the Theory of Point Processes, Vol. II, General Theory and Structure, 2nd edn. Springer, New York.Google Scholar
Devroye, L. and Lu, J. (1995). The strong convergence of maximal degrees in uniform random recursive trees and DAGs. Random Structures Algorithms 7, 114.Google Scholar
Eslava, L., Lodewijks, B. and Ortgiese, M. (2023). Fine asymptotics for the maximum degree in weighted recursive trees with bounded random weights. Stoch. Process. Appl. 158, 505569.Google Scholar
Fountoulakis, N. and Iyer, T. (2022). Condensation phenomena in preferential attachment trees with neighbourhood influence. Electron. J. Prob. 27, article no. 76, 49 pp.Google Scholar
Iyer, T. (2023). Degree distributions in recursive trees with fitnesses. Adv. Appl. Prob. 55, 407443.Google Scholar
Janson, S., Luczak, T. and Rucinski, A. (2000). Random Graphs. John Wiley, New York.Google Scholar
Lodewijks, B. (2022). On joint properties of vertices with a given degree or label in the random recursive tree. Electron. J. Prob. 27, article no. 149, 45 pp.Google Scholar
Lodewijks, B. and Ortgiese, M. (2020). The maximal degree in random recursive graphs with random weights. Preprint. Available at https://arxiv.org/abs/2007.05438.Google Scholar
Mailler, C. and Uribe Bravo, G. (2019). Random walks with preferential relocations and fading memory: a study through random recursive trees. J. Statist. Mech. 2019, article no. 093206.Google Scholar
Pain, M. and Sénizergues, D. (2022). Correction terms for the height of weighted recursive trees. Ann. Appl. Prob. 32, 30273059.Google Scholar
Pain, M. and Sénizergues, D. (2022). Height of weighted recursive trees with sub-polynomially growing total weight. Preprint. Available at https://arxiv.org/abs/2204.05908.Google Scholar
Resnick, S. I. (2008). Extreme Values, Regular Variation and Point Processes. Springer, New York.Google Scholar
Sénizergues, D. (2021). Geometry of weighted recursive and affine preferential attachment trees. Electron. J. Prob. 26, article no. 80, 56 pp.Google Scholar