Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-04T12:41:12.262Z Has data issue: false hasContentIssue false

Measuring the suboptimality of dividend controls in a Brownian risk model

Published online by Cambridge University Press:  07 June 2023

Julia Eisenberg*
Affiliation:
Technische Universität Wien
Paul Krühner*
Affiliation:
Wirtschaftsuniversität Wien
*
*Postal address: Wiedner Hauptstraße 8, 1040 Wien, Austria. Email address: jeisenbe@fam.tuwien.ac.at
**Postal address: Welthandelsplatz 1, 1020 Wien, Austria. Email address: peisenbe@wu.ac.at

Abstract

We consider an insurance company modelling its surplus process by a Brownian motion with drift. Our target is to maximise the expected exponential utility of discounted dividend payments, given that the dividend rates are bounded by some constant. The utility function destroys the linearity and the time-homogeneity of the problem considered. The value function depends not only on the surplus, but also on time. Numerical considerations suggest that the optimal strategy, if it exists, is of a barrier type with a nonlinear barrier. In the related article of Grandits et al. (Scand. Actuarial J. 2, 2007), it has been observed that standard numerical methods break down in certain parameter cases, and no closed-form solution has been found. For these reasons, we offer a new method allowing one to estimate the distance from an arbitrary smooth-enough function to the value function. Applying this method, we investigate the goodness of the most obvious suboptimal strategies—payout on the maximal rate, and constant barrier strategies—by measuring the distance from their performance functions to the value function.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecher, H., Azcue, P. and Muler, N. (2020). Optimal ratcheting of dividends in insurance. SIAM J. Control Optimization 58, 18221845.Google Scholar
Albrecher, H., Bäuerle, N. and Bladt, M. (2018). Dividends: from refracting to ratcheting. Insurance Math. Econom. 83, 4758.Google Scholar
Albrecher, H. and Thonhauser, S. (2007). Dividend maximization under consideration of the time value of ruin. Insurance Math. Econom. 41, 163184.Google Scholar
Albrecher, H. and Thonhauser, S. (2009). Optimality results for dividend problems in insurance. RACSAM 103, 295320.Google Scholar
Asmussen, S. and Taksar, M. (1997). Controlled diffusion models for optimal dividend pay-out. Insurance Math. Econom. 20, 115.Google Scholar
Avanzi, B. (2009). Strategies for dividend distribution: a review. N. Amer. Actuarial J. 13, 217251.Google Scholar
Azcue, P. and Muler, N. (2005). Optimal reinsurance and dividend distribution policies in the Cramér–Lundberg model. Math. Finance 15, 261308.Google Scholar
Baños, D. and Krühner, P. (2016). Optimal density bounds for marginals of Itô processes. Commun. Stoch. Anal. 10, 131150.Google Scholar
Borodin, A. N. and Salminen, P. (2002). Handbook of Brownian Motion—Facts and Formulae, 2nd edn. Birkhäuser, Basel.Google Scholar
Bühlmann, H. (1970). Mathematical Methods in Risk Theory. Springer, New York.Google Scholar
De Finetti, B. (1957). Su un’impostazione alternativa della teoria collettiva del rischio. In Transactions of the XVth International Congress of Actuaries, Vol. II, Actuarial Society of America, New York, pp. 433–443.Google Scholar
Fleming, W. H. and Soner, H. M. (1993). Controlled Markov processes and viscosity solutions, 1st edn. Springer, New York.Google Scholar
Gerber, H. U. (1969). Entscheidungskriterien für den zusammengesetzten Poisson-Prozess. Mitt. Verein. Schweiz. Versicherungsmath. 69, 185228.Google Scholar
Gould, J. (2008). Munich Re pledges stable dividend after profit drop. Available at https://www.reuters.com/ article/sppage012-l5116107-oisbn-idUSL511610720080806.Google Scholar
Grandits, P., Hubalek, F., Schachermayer, W. and Zigo, M. (2007). Optimal expected exponential utility of dividend payments in Brownian risk model. Scand. Actuarial J. 2, 73107.Google Scholar
Hubalek, F. and Schachermayer, W. (2004). Optimization expected utility of dividend payments for a Brownian risk process and a peculiar nonlinear ode. Insurance Math. Econom. 34, 193225.Google Scholar
Peskir, G. (2005). A change-of-variable formula with local time on curves. J. Theoret. Prob. 18, 499535.Google Scholar
Revuz, D. and Yor, M. (2005). Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin, Heidelberg.Google Scholar
Schmidli, H. (2008). Stochastic Control in Insurance. Springer, London.Google Scholar
Shreve, S. E., Lehoczky, J. P. and Gaver, D. P. (1984). Optimal consumption for general diffusions with absorbing and reflecting barriers. SIAM J. Control Optimization 22, 5575.Google Scholar