Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T09:09:02.761Z Has data issue: false hasContentIssue false

Normal approximation in total variation for statistics in geometric probability

Published online by Cambridge University Press:  03 July 2023

Tianshu Cong*
Affiliation:
Jilin University, University of Melbourne
Aihua Xia*
Affiliation:
University of Melbourne
*
*Postal address: School of Mathematics and Statistics, the University of Melbourne, Parkville VIC 3010, Australia.
*Postal address: School of Mathematics and Statistics, the University of Melbourne, Parkville VIC 3010, Australia.

Abstract

We use Stein’s method to establish the rates of normal approximation in terms of the total variation distance for a large class of sums of score functions of samples arising from random events driven by a marked Poisson point process on $\mathbb{R}^d$. As in the study under the weaker Kolmogorov distance, the score functions are assumed to satisfy stabilisation and moment conditions. At the cost of an additional non-singularity condition, we show that the rates are in line with those under the Kolmogorov distance. We demonstrate the use of the theorems in four applications: Voronoi tessellations, k-nearest-neighbours graphs, timber volume, and maximal layers.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avram, F. and Bertsimas, D. (1993). On central limit theorems in geometrical probability. Ann. Appl. Prob. 3, 10331046.CrossRefGoogle Scholar
Bally, V. and Caramellino, L. (2016). Asymptotic development for the CLT in total variation distance. Bernoulli 22, 24422485.CrossRefGoogle Scholar
Barbour, A. D. (1988). Stein’s method and Poisson process convergence. J. Appl. Prob. 25, 175184.CrossRefGoogle Scholar
Barbour, A. D. and Brown, T. C. (1992). Stein’s method and point process approximation. Stoch. Process. Appl. 43, 931.CrossRefGoogle Scholar
Barbour, A. D., Holst, L. and Janson, S. (1992). Poisson Approximation. Oxford University Press.CrossRefGoogle Scholar
Barbour, A. D., Luczak, M. J. and Xia, A. (2018). Multivariate approximation in total variation, I: equilibrium distributions of Markov jump processes. Ann. Prob. 46, 13511404.CrossRefGoogle Scholar
Berry, A. C. (1941). The accuracy of the Gaussian approximation to the sum of independent variates. Trans. Amer. Math. Soc. 49, 122136.CrossRefGoogle Scholar
Cailliez, F. (1980). Forest Volume Estimation and Yield Prediction. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
Čekanavičius, V. (2000). Remarks on estimates in the total-variation metric. Lithuanian Math. J. 40, 113.CrossRefGoogle Scholar
Chen, L. H. Y., Goldstein, L. and Shao, Q.-M. (2011). Normal Approximation by Stein’s Method. Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
Chen, W. M., Hwang, H. K. and Tsai, T. H. (2003). Efficient maxima-finding algorithms for random planar samples. Discrete Math. Theoret. Comput. Sci. 6, 107122.Google Scholar
Chen, L. H. Y. and Leong, Y. K. (2010). From zero-bias to discretized normal approximation. Preprint.Google Scholar
Chen, L. H. Y., Röllin, A. and Xia, A. (2021). Palm theory, random measures and Stein couplings. Ann. Appl. Prob. 31, 28812923.CrossRefGoogle Scholar
Chen, L. H. Y. and Xia, A. (2004). Stein’s method, Palm theory and Poisson process approximation. Ann. Prob. 32, 25452569.CrossRefGoogle Scholar
Chiu, S. N., Stoyan, D., Kendall, W. S. and Mecke, J. (2013). Stochastic Geometry and Its Applications. John Wiley, New York.CrossRefGoogle Scholar
Daley, D. J. and Vere-Jones, D. (2008). An Introduction to the Theory of Point Processes, Vol. 2. Springer, New York.CrossRefGoogle Scholar
Devroye, L. (1988) The expected size of some graphs in computational geometry. Comput. Math. Appl. 15, 5364.CrossRefGoogle Scholar
Devroye, L., Mehrabian, A. and Redded, T. (2020). The total variation distance between high-dimensional Gaussians. Preprint. Available at https://arxiv.org/abs/1810.08693v5.Google Scholar
Diaconis, P. and Freedman, D. (1987). A dozen de Finetti-style results in search of a theory. Ann. Inst. H. Poincaré Prob. Statist. 23, 397423.Google Scholar
Esseen, C.-G. (1942). On the Liapounoff limit of error in the theory of probability. Ark. Mat. Astr. Fys. 28A, 119.Google Scholar
Fang, X. (2014). Discretized normal approximation by Stein’s method. Bernoulli 20, 14041431.CrossRefGoogle Scholar
Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. 2. John Wiley, New York.Google Scholar
Flimmel, D., Pawlas, Z. and Yukich, J. E. (2020). Limit theory for unbiased and consistent estimators of statistics of random tessellations. J. Appl. Prob. 57, 679702.CrossRefGoogle Scholar
Goldstein, L. and Xia, A. (2006). Zero biasing and a discrete central limit theorem. Ann. Prob. 34, 17821806.CrossRefGoogle Scholar
Halmos, P. R. (1974). Measure Theory. Springer, New York.Google Scholar
Kallenberg, O. (1983). Random Measures. Academic Press, London.CrossRefGoogle Scholar
Kallenberg, O. (2017). Random Measures, Theory and Applications. Springer.CrossRefGoogle Scholar
Khanteimouri, P. et al. (2017). Efficiently computing the smallest axis-parallel squares spanning all colors. Sci. Iranica D 24, 13251334.CrossRefGoogle Scholar
Kung, H. T., Luccio, F. and Preparata, F. P. (1975). On finding the maxima of a set of vectors. J. Assoc. Comput. Mach. 22, 469476.CrossRefGoogle Scholar
Lachièze-Rey, R., Schulte, M. and Yukich, J. E. (2019). Normal approximation for stabilizing functionals. Ann. Appl. Prob. 29, 931993.CrossRefGoogle Scholar
Last, G., Peccati, G. and Schulte, M. (2016). Normal approximation on Poisson spaces: Mehler’s formula, second order Poincaré inequalities and stabilization. Prob. Theory Relat. Fields 165, 667723.CrossRefGoogle Scholar
Li, C., Barclay, H., Hans, H. and Sidders, D. (2015). Estimation of log volumes: a comparative study. Tech. Rep., Canadian Wood Fibre Centre, Edmonton.Google Scholar
Lindvall, T. (1992). Lectures on the Coupling Method. John Wiley, New York.Google Scholar
McGivney, K. and Yukich, J. E. (1999). Asymptotics for Voronoi tessellations on random samples. Stoch. Process. Appl. 83, 273288.CrossRefGoogle Scholar
Mecke, J. (1967). Zum Problem der Zerlegbarkeit stationärer rekurrenter zufälliger Punktfolgen. Math. Nachr. 35, 311321.CrossRefGoogle Scholar
Meckes, E. S. and Meckes, M. W. (2007). The central limit problem for random vectors with symmetries. J. Theoret. Prob. 20, 697720.CrossRefGoogle Scholar
Peccati, G., Solé, J. L., Taqqu, M. S. and Utzet, F. (2010). Stein’s method and normal approximation of Poisson functionals. Ann. Prob. 38, 443478.CrossRefGoogle Scholar
Penrose, M. D. and Yukich, J. E. (2001). Central limit theorems for some graphs in computational geometry. Ann. Appl. Prob. 11, 10051041.CrossRefGoogle Scholar
Penrose, M. D. and Yukich, J. E. (2005). Normal approximation in geometric probability. In Stein’s Method and Applications, eds A. D. Barbour and L. H. Y. Chen, World Scientific, Singapore, pp. 37–58.CrossRefGoogle Scholar
Prohorov, Y. V. (1952). A local theorem for densities. Dokl. Akad. Nauk SSSR 83, 797800.Google Scholar
Reitzner, M. and Schulte, M. (2013). Central limit theorems for U-statistics of Poisson point processes. Ann. Prob. 41, 38793909.CrossRefGoogle Scholar
Rényi, A. (1962). Théorie des éléments saillants d’une suite d’observations. Ann. Sci. Univ. Clermont Math. 8, 713.Google Scholar
Röllin, A. (2005). Approximation of sums of conditionally independent variables by the translated Poisson distribution. Bernoulli 11, 11151128.CrossRefGoogle Scholar
Röllin, A. (2007). Translated Poisson approximation using exchangeable pair couplings. Ann. Appl. Prob. 17, 15961614.CrossRefGoogle Scholar
Röllin, A. (2008). Symmetric and centered binomial approximation of sums of locally dependent random variables. Electron. J. Prob. 13, 756776.Google Scholar
Schulte, M. (2012). Normal approximation of Poisson functionals in Kolmogorov distance. J. Theoret. Prob. 29, 96117.CrossRefGoogle Scholar
Schulte, M. (2016). A central limit theorem for the Poisson–Voronoi approximation. Adv. Appl. Math. 49, 285306.CrossRefGoogle Scholar
Toussaint, G.T. (1982). Computational geometric problems in pattern recognition. In Pattern Recognition Theory and Applications, eds J. Kittler, K. S. Fu and L. F. Pau, Springer, Dordrecht, pp. 73–91.CrossRefGoogle Scholar
Tsybakov, A. B. (2009). Introduction to Nonparametric Estimation. Springer, New York.CrossRefGoogle Scholar
Wintner, A. (1938). Asymptotic Distributions and Infinite Convolutions. Edwards Brothers, Ann Arbor.Google Scholar
Xia, A. and Yukich, J. (2015). Normal approximation for statistics of Gibbsian input in geometric probability. Adv. Appl. Prob. 47, 934972.CrossRefGoogle Scholar
Yukich, J. E. (2015). Surface order scaling in stochastic geometry. Ann. Appl. Prob. 25, 177210.CrossRefGoogle Scholar