[1]
Adler, R. J. (1981). The Geometry of Random Fields, John Wiley, Chichester.

[2]
Ambrosio, L., Fusco, N. and Pallara, D. (2000). Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press.

[3]
Aubert, G. and Kornprobst, G. (2006). Mathematical Problems in Image Processing (Appl. Math. Sci. 147), 2nd edn. Springer, New York.

[4]
Azaïs, J.-M. and Wschebor, M. (2009). Level Sets and Extrema of Random Processes and Fields. John Wiley, Hoboken, NJ.

[5]
Biermé, H. and Desolneux, A. (2016). On the perimeter of excursion sets of shot noise random fields. Ann. Prob.
44, 521–543 .

[6]
Biermé, H., Meerschaert, M. M. and Scheffler, H.-P. (2007). Operator scaling stable random fields. Stoch. Process. Appl.
117, 312–332.

[7]
Bordenave, C., Gousseau, Y. and Roueff, F. (2006). The dead leaves model: a general tessellation modeling occlusion. Adv. Appl. Prob.
38, 31–46.

[8]
Chlebík, M. (1997). On variation of sets. Preprint. 44, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig.

[9]
Cowan, R. and Tsang, A. K. L. (1994). The falling-leaves mosaic and its equilibrium properties. Adv. Appl. Prob.
26, 54–62.

[10]
Galerne, B. (2011). Computation of the perimeter of measurable sets via their covariogram. Applications to random sets. Image Anal. Stereol.
30, 39–51.

[11]
Galerne, B. and Gousseau, Y. (2012). The transparent dead leaves model. Adv. Appl. Prob.
44, 1–20.

[12]
Galerne, B. and Lachièze-Rey, R. (2015). Random measurable sets and covariogram realizability problems. Adv. Appl. Prob.
47, 611–639.

[13]
Gikhman, I. I. and Skorokhod, A. V. (1974). The Theory of Stochastic Processes. I. Springer, Berlin.

[14]
Hug, D., Last, G. and Weil, W. (2004). A local Steiner-type formula for general closed sets and applications. Math. Z.
246, 237–272.

[15]
Ibragimov, I. A. (1995). Remarks on variations of random fields. J. Math. Sci.
75, 1931–1934.

[16]
Jeulin, D. (1997). Dead leaves models: from space tessellation to random functions. In Proceedings of the International Symposium on Advances in Theory and Applications of Random Sets, World Scientific, River Edge, NJ, pp.137–156.

[17]
Kingman, J. F. C. (1993). Poisson Processes (Oxford Studies Prob. 3). Oxford University Press.

[18]
Lantuéjoul, C. (2002). Geostatistical Simulation: Models and Algorithms. Springer, Berlin.

[19]
Matheron, G. (1975). Random Sets and Integral Geometry. John Wiley, New York.

[20]
Meyer, Y. (2001). Oscillating Patterns in Image Processing and Nonlinear Evolution Equations (Univ. Lecture Ser. 22). American Mathematical Society, Providence, RI.

[21]
Molchanov, I. (2005). Theory of Random Sets. Springer, London.

[22]
Rataj, J. (2015). Random sets of finite perimeter. Math. Nachr.
288, 1047–1056.

[23]
Rudin, L. I., Osher, S. and Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D
60, 259–268.

[24]
Scheuerer, M. (2010). Regularity of the sample paths of a general second order random field. Stoch. Process. Appl.
120, 1879–1897.

[25]
Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry. Springer, Berlin.

[26]
Serra, J. (1982). Image Analysis and Mathematical Morphology. Academic Press, London.

[27]
Serra, J. (ed.) (1988). Image Analysis and Mathematical Morphology, Vol. 2, *Theoretical Advances*. Academic Press, London.

[28]
Stoyan, D. (1986). On generalized planar random tessellations. Math. Nachr.
128, 215–219.

[29]
Stoyan, D., Kendall, W. S. and mecke, J. (1995). Stochastic Geometry and Its Applications, 2nd edn. John Wiley, Chichester.

[30]
Villa, E. (2009). On the outer Minkowski content of sets. Ann. Mat. Pura Appl. (4)
188, 619–630.

[31]
Villa, E. (2010). Mean densities and spherical contact distribution function of inhomogeneous Boolean models. Stoch. Anal. Appl.
28, 480–504.