[1]
Aliprantis, C. D. and Border, K. C. (2006). Infinite Dimensional Analysis: A Hitchhiker's Guide, 3rd edn.
Springer, Berlin.

[2]
Ambrosio, L., Fusco, N. and Pallara, D. (2000). Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press.

[3]
Bogachev, V. I. (2007). Measure Theory, Vol. II. Springer, Berlin.

[4]
Caselles, V., Chambolle, A., Moll, S. and Novaga, M. (2008). A characterization of convex calibrable sets in R^{
N
} with respect to anisotropic norms. Ann. Inst. H. Poincaré
Anal. Non Linéaire
25, 803-832.

[5]
Chilès, J.-P. and Delfiner, P. (1999). Geostatistics: Modeling Spatial Uncertainty. John Wiley, New York.

[6]
Daley, D. J. and Vere-Jones, D. (2008). An Introduction to the Theory of Point Processes, Vol. II: General Theory and Structure, 2nd edn.
Springer, New York.

[7]
Deza, M. M. and Laurent, M. (1997). Geometry of Cuts and Metrics. Springer, Berlin.

[8]
Emery, X. (2010). On the existence of mosaic and indicator random fields with spherical, circular, and triangular variograms. Math. Geosci.
42, 969–984.

[9]
Evans, L. C. and Gariepy, R. F. (1992). Measure Theory and Fine Properties of Functions. CRC, Boca Raton, FL.

[10]
Fritz, T. and Chaves, R. (2013). Entropic inequalities and marginal problems. IEEE Trans. Inf. Theory
59, 803–817.

[11]
Galerne, B. (2011). Computation of the perimeter of measurable sets via their covariogram. Applications to random sets. Image Anal. Stereol.
30, 39–51.

[12]
Galerne, B. (2014). Random fields of bounded variation and computation of their variation intensity. Tech. Rep. 2014-25, Laboratoire MAP5, Université Paris Descartes.

[13]
Himmelberg, C. J. (1975). Measurable relations. Fund. Math
87, 53–72.

[14]
Hirsch, F. and Lacombe, G. (1999). Elements of Functional Analysis (Graduate Texts Math. 192), Springer, New York.

[15]
Jiao, Y., Stillinger, F. H. and Torquato, S. (2007). Modeling heterogeneous materials via two-point correlation functions: basic principles. Phys. Rev. E
76, 031110.

[16]
Kallenberg, O. (1986). Random Measures, 4th edn.
Akademie-Verlag, Berlin.

[17]
Kuna, T., Lebowitz, J. L. and Speer, E. R. (2011). Necessary and sufficient conditions for realizability of point processes. Ann. Appl. Prob.
21, 1253–1281.

[18]
Lachièze-Rey, R. (2013). Realisability conditions for second-order marginals of biphased media. Random Structures Algorithms 10.1002/rsa.20546.

[19]
Lachiéze-Rey, R. and Molchanov, I. (2015). Regularity conditions in the realisability problem with applications to point processes and random closed sets. Ann. Appl. Prob.
25, 116–149.

[20]
Lantuéjoul, C. (2002). Geostatistical Simulation: Models and Algorithms. Springer, Berlin.

[21]
Masry, E. (1972). On covariance functions of unit processes. SIAM J. Appl. Math.
23, 28–33.

[22]
Matheron, G. (1975). Random Sets and Integral Geometry. John Wiley, New York.

[23]
Matheron, G. (1993). Une conjecture sur la covariance d'un ensemble aléatoire. In Cahiers de Géostatistique, Fascicule 3, Compte-Rendu des Journées de Géostatistique (Fontainebleau, 1993), pp. 107–113.

[24]
McMillan, B. (1955). History of a problem. J. Soc. Ind. Appl. Math.
3, 119–128.

[25]
Molchanov, I. (2005). Theory of Random Sets. Springer, London.

[26]
Quintanilla, J. A. (2008). Necessary and sufficient conditions for the two-point phase probability function of two-phase random media. Proc. R. Soc. London A
464, 1761–1779.

[27]
Rataj, J. (2014). Random sets of finite perimeter. Math. Nachr.
288, 1047–1056.

[28]
Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry. Springer, Berlin.

[29]
Shepp, L. A. (1963). On positive-definite functions associated with certain stochastic processes. Tech. Rep. 63-1213-11, Bell Laboratories.

[30]
Straka, F. and Štěpán, J. (1988). Random sets in [0,1]. In Transactions of the Tenth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, Vol. B, Reidel, Dordrecht, pp. 349–356.

[31]
Torquato, S. (2002). Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York.