Skip to main content

Shearer's point process, the hard-sphere model, and a continuum Lovász local lemma

  • Christoph Hofer-Temmel (a1)

A point process is R-dependent if it behaves independently beyond the minimum distance R. In this paper we investigate uniform positive lower bounds on the avoidance functions of R-dependent simple point processes with a common intensity. Intensities with such bounds are characterised by the existence of Shearer's point process, the unique R-dependent and R-hard-core point process with a given intensity. We also present several extensions of the Lovász local lemma, a sufficient condition on the intensity and R to guarantee the existence of Shearer's point process and exponential lower bounds. Shearer's point process shares a combinatorial structure with the hard-sphere model with radius R, the unique R-hard-core Markov point process. Bounds from the Lovász local lemma convert into lower bounds on the radius of convergence of a high-temperature cluster expansion of the hard-sphere model. This recovers a classic result of Ruelle (1969) on the uniqueness of the Gibbs measure of the hard-sphere model via an inductive approach of Dobrushin (1996).

Corresponding author
* Current address: , c/o FMW, MPC 10A, Postbus 10000, 1780 CA Den Helder, The Netherlands. Email address:
Hide All
[1] Aaronson, J.,Gilat, D. and Keane, M. (1992).On the structure of 1-dependent Markov chains.J. Theoret. Prob. 5,545561.
[2] Aaronson, J.,Gilat, D.,Keane, M. and de Valk, V. (1989).An algebraic construction of a class of one-dependent processes.Ann. Prob. 17,128143.
[3] Alon, N. and Spencer, J. H. (2008).The Probabilistic Method,3rd edn.John Wiley,Hoboken, NJ.
[4] Baddeley, A. J.,van Lieshout, M. N. M. and Møller, J. (1996).Markov properties of cluster processes.Adv. Appl. Prob. 28,346355.
[5] Błaszczyszyn, B. and Yogeshwaran, D. (2014).On comparison of clustering properties of point processes.Adv. Appl. Prob. 46,120.
[6] Błaszczyszyn, B. and Yogeshwaran, D. (2015).Clustering comparison of point processes, with applications to random geometric models. In Stochastic Geometry, Spatial Statistics and Random Fields (Lecture Notes Math. 2120),Springer,Cham,pp.3171.
[7] Borodin, A. (2011).Determinantal point processes. In The Oxford Handbook of Random Matrix Theory,Oxford University Press,pp.231249.
[8] Broman, E. I. (2005).One-dependent trigonometric determinantal processes are two-block-factors.Ann. Prob. 33,601609.
[9] Burton, R. M.,Goulet, M. and Meester, R. (1993).On 1-dependent processes and k-block factors.Ann. Prob. 21,21572168.
[10] Daley, D. J. and Vere-Jones, D. (2003).An introduction to the Theory of Point Processes: Elementary Theory and Methods,Vol. I,2nd edn.Springer,New York.
[11] Daley, D. J. and Vere-Jones, D. (2008).An Introduction to the Theory of Point Processes: General Theory and Structure,Vol. II,2nd edn.Springer,New York.
[12] De Valk, V. (1988).The maximal and minimal 2-correlation of a class of 1-dependent 0-1 valued processes.Israel J. Math. 62,181205.
[13] De Valk, V. (1993).Hilbert space representations of m-dependent processes.Ann. Prob. 21,15501570.
[14] Dobrushin, R. L. (1996).Estimates of semi-invariants for the Ising model at low temperatures. In Topics in Statistical and Theoretical Physics(Amer. Math. Soc. Transl. Ser. 2 177),American Mathematical Society,Providence, RI,pp.5981.
[15] Eisenbaum, N. (2012).Stochastic order for alpha-permanental point processes.Stoch. Process. Appl. 122,952967.
[16] Erdös, P. and Lovász, L. (1975).Problems and results on 3-chromatic hypergraphs and some related questions. In Infinite and Finite Sets: To Paul Erdös on His 60th Birthday(Keszthely, 1973; Colloq. Math. Soc. János Bolyai 10),Vol. II,North-Holland,Amsterdam,pp.609627.
[17] Fernández, R. and Procacci, A. (2007).Cluster expansion for abstract polymer models. New bounds from an old approach.Commun. Math. Phys. 274,123140.
[18] Fernández, R.,Procacci, A. and Scoppola, B. (2007).The analyticity region of the hard sphere gas. Improved bounds.J. Statist. Phys. 128,11391143.
[19] Hofer-Temmel, C. (2015).Shearer's point process and the hard-sphere model in one dimension.Preprint. Available at
[20] Hofer-Temmel, C. and Lehner, F. (2015).Clique trees of infinite locally finite chordal graphs.Preprint. Available at
[21] Holroyd, A. E. (2014).One-dependent coloring by finitary factors.Preprint. Available at
[22] Janson, S. (1984).Runs in m-dependent sequences.Ann. Prob. 12,805818.
[23] Jensen, T. R. and Toft, B. (1995).Graph Coloring Problems.John Wiley,New York.
[24] Kotecký, R. and Preiss, D. (1986).Cluster expansion for abstract polymer models.Commun. Math. Phys. 103,491498.
[25] Liggett, T. M.,Schonmann, R. H. and Stacey, A. M. (1997).Domination by product measures.Ann. Prob. 25,7195.
[26] Matérn, B. (1960).Spatial Variation: Stochastic Models and Their Application to Some Problems in Forest Surveys and Other Sampling Investigations.Meddelanden Från Statens Skogsforskningsinstitut 49,Stockholm.
[27] Mathieu, P. and Temmel, C. (2012). k-independent percolation on trees.Stoch. Process. Appl. 122,11291153.
[28] Miracle-Solé, S. (2010).On the theory of cluster expansions.Markov Process. Relat. Fields 16,287294.
[29] Penrose, O. (1967).Convergence of fugacity expansions for classical systems.In Statistical Mechanics: Foundations and Applications,ed. T. Bak,Benjamin,New York,pp.101109.
[30] Rolski, T. and Szekli, R. (1991).Stochastic ordering and thinning of point processes.Stoch. Process. Appl. 37,299312.
[31] Ruelle, D. (1969).Statistical Mechanics: Rigorous Results.Benjamin,New York.
[32] Scott, A. D. and Sokal, A. D. (2005).The repulsive lattice gas, the independent-set polynomial, and the Lovász local lemma.J. Statist. Phys. 118,11511261.
[33] Shearer, J. B. (1985).On a problem of Spencer.Combinatorica 5,241245.
[34] Soshnikov, A. (2000).Determinantal random point fields.Uspekhi Mat. Nauk 55,107160.
[35] Stoyan, D. and Stoyan, H. (1985).On one of Matérn's hard-core point process models.Math. Nachr. 122,205214.
[36] Teichmann, J.,Ballani, F. and van den Boogaart, K. (2013).Generalizations of Matérn's hard-core point processes.Spatial Statist. 3,3353.
[37] Temmel, C. (2014).Shearer's measure and stochastic domination of product measures.J. Theoret. Prob. 27,2240.
[38] van Lieshout, M. N. M. and Baddeley, A. J. (1996).A nonparametric measure of spatial interaction in point patterns.Statist. Neerlandica 50,344361.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Probability
  • ISSN: 0001-8678
  • EISSN: 1475-6064
  • URL: /core/journals/advances-in-applied-probability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed