[1]
Aurenhammer, F., Klein, R. and Lee, D.-T. (2013). Voronoi Diagrams and Delaunay Triangulations. World Scientific, Hackensack, NJ.

[2]
Baccelli, F., Tchoumatchenko, K. and Zuyev, S. (2000). Markov paths on the Poisson-Delaunay graph with applications to routing in mobile networks. Adv. Appl. Prob.
32, 1–18.

[3]
Bose, P. and Devroye, L. (2007). On the stabbing number of a random Delaunay triangulation. Comput. Geom.
36, 89–105.

[4]
Bose, P. and Morin, P. (2004). Online routing in triangulations. SIAM J. Comput.
33, 937–951.

[5]
Calka, P. (2002). The distributions of the smallest disks containing the Poisson-Voronoi typical cell and the Crofton cell in the plane. Adv. Appl. Prob.
34, 702–717.

[6]
Cazals, F. and Giesen, J. (2006). Delaunay triangulation based surface reconstruction. In Effective Computational Geometry for Curves and Surfaces, Springer, Berlin, pp. 231–276.

[7]
Chenavier, N. and Devillers, O. (2016). Stretch factor of long paths in a planar Poisson-Delaunay triangulation. Res. Rep. 8935, INRIA.

[8]
Cheng, S.-W., Dey, T. K. and Shewchuk, J. R. (2013). Delaunay Mesh Generation. Chapman & Hall/CRC, Boca Raton, FL.

[9]
Cox, J. T., Gandolfi, A., Griffin, P. S. and Kesten, H. (1993). Greedy lattice animals. I. Upper bounds. Ann. Appl. Prob.
3, 1151–1169.

[10]
De Castro, P. M. M. and Devillers, O. (2018). Expected length of the Voronoi path in a high dimensional Poisson–Delaunay triangulation. Discrete Comput. Geom.
1–20. Available at https://doi.org/10.1007/s00454-017-9866-y.
[11]
Devillers, O. and Hemsley, R. (2016). The worst visibility walk in random Delaunay triangulation is *O*(√*n*). J. Comput. Geom.
7, 332–359.

[12]
Devillers, O. and Noizet, L. (2016). Walking in a planar Poisson-Delaunay triangulation: shortcuts in the Voronoi path. Res. Rep. 8946, INRIA.

[13]
Devillers, O., Pion, S. and Teillaud, M. (2002). Walking in a triangulation. Internat. J. Found. Comput. Sci.
13, 181–199.

[14]
Devroye, L., Lemaire, C. and Moreau, J.-M. (2004). Expected time analysis for Delaunay point location. Comput. Geom.
29, 61–89.

[15]
Dobkin, D. P., Friedman, S. J. and Supowit, K. J. (1990). Delaunay graphs are almost as good as complete graphs. Discrete Comput. Geom.
5, 399–407.

[16]
Gerard, Y., Vacavant, A. and Favreau, J.-M. (2016). Tight bounds in the quadtree complexity theorem and the maximal number of pixels crossed by a curve of given length. Theoret. Comput. Sci.
624, 41–55.

[17]
Hirsch, C., Neuhä;user, D. and Schmidt, V. (2016). Moderate deviations for shortest-path lengths on random segment processes. ESAIM Prob. Statist.
20, 261–292.

[18]
Keil, J. M. and Gutwin, C. A. (1989). The Delaunay triangulation closely approximates the complete Euclidean graph. In Algorithms and Data Structures (Lecture Notes Comput. Sci. **382**), Springer, Berlin, pp. 47–56.

[19]
Penrose, M. (2003). Random Geometric Graphs. Oxford University Press.

[20]
Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry. Springer, Berlin.

[21]
Thä;le, C. and Yukich, J. E. (2016). Asymptotic theory for statistics of the Poisson-Voronoi approximation. Bernoulli
22, 2372–2400.

[22]
Xia, G. (2013). The stretch factor of the Delaunay triangulation is less than 1.998. SIAM J. Comput.
42, 1620–1659.

[23]
Xia, G. and Zhang, L. (2011). Toward the tight bound of the stretch factor of Delaunay triangulations. In Proceedings 23th Canadian Conference on Computational Geometry, 6 pp.

[24]
Yukich, J. E. (2015). Surface order scaling in stochastic geometry. Ann. Appl. Prob.
25, 177–210.