Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-21T20:59:45.688Z Has data issue: false hasContentIssue false

Strong Local Survival of Branching Random Walks is Not Monotone

Published online by Cambridge University Press:  22 February 2016

Daniela Bertacchi*
Università di Milano-Bicocca
Fabio Zucca*
Politecnico di Milano
Postal address: Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, via Cozzi 53, 20125 Milano, Italy. Email address:
∗∗ Postal address: Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy. Email address:
Rights & Permissions [Opens in a new window]


Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we study the strong local survival property for discrete-time and continuous-time branching random walks. We study this property by means of an infinite-dimensional generating function G and a maximum principle which, we prove, is satisfied by every fixed point of G. We give results for the existence of a strong local survival regime and we prove that, unlike local and global survival, in continuous time, strong local survival is not a monotone property in the general case (though it is monotone if the branching random walk is quasitransitive). We provide an example of an irreducible branching random walk where the strong local property depends on the starting site of the process. By means of other counterexamples, we show that the existence of a pure global phase is not equivalent to nonamenability of the process, and that even an irreducible branching random walk with the same branching law at each site may exhibit nonstrong local survival. Finally, we show that the generating function of an irreducible branching random walk can have more than two fixed points; this disproves a previously known result.

General Applied Probability
© Applied Probability Trust 


Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Springer, New York.CrossRefGoogle Scholar
Belhadji, L. and Lanchier, N. (2006). Individual versus cluster recoveries within a spatially structured population. Ann. Appl. Prob. 16, 403422.CrossRefGoogle Scholar
Belhadji, L., Bertacchi, D. and Zucca, F. (2010). A self-regulating and patch subdivided population. Adv. Appl. Prob. 42, 899912.CrossRefGoogle Scholar
Bertacchi, D., Lanchier, N. and Zucca, F. (2011). Contact and voter processes on the infinite percolation cluster as models of host-symbiont interactions. Ann. Appl. Prob. 21, 12151252.CrossRefGoogle Scholar
Bertacchi, D., Posta, G. and Zucca, F. (2007). Ecological equilibrium for restrained branching random walks. Ann. Appl. Prob. 17, 11171137.CrossRefGoogle Scholar
Bertacchi, D. and Zucca, F. (2008). Critical behaviors and critical values of branching random walks on multigraphs. J. Appl. Prob. 45, 481497.CrossRefGoogle Scholar
Bertacchi, D. and Zucca, F. (2009). Approximating critical parameters of branching random walks. J. Appl. Prob. 46, 463478.CrossRefGoogle Scholar
Bertacchi, D. and Zucca, F. (2009). Characterization of critical values of branching random walks on weighted graphs through infinite-type branching processes. J. Statist. Phys. 134, 5365.CrossRefGoogle Scholar
Bertacchi, D. and Zucca, F. (2012). Recent results on branching random walks. In Statistical Mechanics and Random Walks: Principles, Processes and Applications, Nova Science Publishers, pp. 289340.Google Scholar
Biggins, J. D. (1977). Martingale convergence in the branching random walk. J. Appl. Prob. 14, 2537.CrossRefGoogle Scholar
Biggins, J. D. (1978). The asymptotic shape of the branching random walk. Adv. Appl. Prob. 10, 6284.CrossRefGoogle Scholar
Biggins, J. D. and Kyprianou, A. E. (1997). Seneta–Heyde norming in the branching random walk. Ann. Prob. 25, 337360.CrossRefGoogle Scholar
Biggins, J. D. and Rahimzadeh Sani, A. (2005). Convergence results on multitype, multivariate branching random walks. Adv. Appl. Prob. 37, 681705.CrossRefGoogle Scholar
Galton, F. and Watson, H.W. (1875). On the probability of the extinction of families. J. Anthropological Inst. Great Britain Ireland 4, 138144.Google Scholar
Gantert, N., Müller, S., Popov, S. and Vachkovskaia, M. (2010). Survival of branching random walks in random environment. J. Theoret. Prob. 23, 10021014.CrossRefGoogle Scholar
Harris, T. E. (1963). The Theory of Branching Processes. Springer, Berlin.CrossRefGoogle Scholar
Hueter, I. and Lalley, S.P. (2000). Anisotropic branching random walks on homogeneous trees. Prob. Theory Relat. Fields 116, 5788.CrossRefGoogle Scholar
Liggett, T. M. (1996). Branching random walks and contact processes on homogeneous trees. Prob. Theory Relat. Fields 106, 495519.CrossRefGoogle Scholar
Liggett, T. M. (1999). Branching random walks on finite trees. In Perplexing Problems in Probability: Festschrift in Honor of Harry Keston (Progr. Prob. 44), Birkhäuser, Boston, MA.Google Scholar
Madras, N. and Schinazi, R. (1992). Branching random walks on trees. Stoch. Proc. Appl. 42, 255267.CrossRefGoogle Scholar
Menshikov, M. V. and Volkov, S. E. (1997). Branching Markov chains: qualitative characteristics. Markov Proc. Relat. Fields 3, 225241.Google Scholar
Mountford, T. and Schinazi, R. B. (2005). A note on branching random walks on finite sets. J. Appl. Prob. 42, 287294.CrossRefGoogle Scholar
Müller, S. (2008). Recurrence for branching Markov chains. Electron. Commun. Prob. 13, (2008), 576605.CrossRefGoogle Scholar
Pemantle, R. and Stacey, A. M. (2001). The branching random walk and contact process on Galton–Watson and nonhomogeneous trees. Ann. Prob. 29, 15631590.CrossRefGoogle Scholar
Spataru, A. (1989). Properties of branching processes with denumerably many types. Rev. Roumaine Math. Pures Appl. 34, 747759.Google Scholar
Stacey, A. (2003). Branching random walks on quasi-transitive graphs. Combinatorics Prob. Comput. 12, 345358.CrossRefGoogle Scholar
Woess, W. (2000). Random walks on infinite graphs and groups. (Cambr. Tracts Math. 138), Cambridge University Press.CrossRefGoogle Scholar
Zucca, F. (2011). Survival, extinction and approximation of discrete-time branching random walks. J. Statist. Phys. 142, 726753.CrossRefGoogle Scholar