Skip to main content Accesibility Help
×
×
Home

Sustainability of ruminant agriculture in the new context: feeding strategies and features of animal adaptability into the necessary holistic approach

  • F. Bocquier (a1) and E. González-García (a2)
Abstract

There are numerous recent studies highlighting sustainability problems for the development of ruminant production systems (RPS) while facing increasing human food necessities and global climate change. Despite the complexity of the context, in our view the main objectives of the ruminants’ physiologist should be convergent for both industrialized (IC) and developing countries (DC) in a common and global strategy of advancing knowledge. In DC, this means improving the efficiency of RPS, taking into account the unique possibility of using rangelands. For IC settings, RPS should be revisited in terms of autonomy and environment- friendly feeding and managing practices. Assuming that competition for feed/food use is still a crucial criterion, future ruminant feeding systems (FeSyst) should preferably focus on lignocellulosic sources. According to biome distributions, and the recent increases in volumes of crop residues and their by-products, the annually renewed volumes of these biomasses are considerable. Therefore, we need to redesign our strategies for their efficient utilization at the local level. For this purpose, digestion processes and rumen functioning need to be better understood. The renewed vision of ruminal digestion through the reduction of greenhouse gas emissions is also a key aspect as it is an environmental demand that cannot be ignored. With regard to other ruminants’ physiological functions, accumulated knowledge could be mobilized into an integrative approach that puts forward the adaptive capacities of animals to face variability in quantity and quality of supplied feeds. Basically, the reduction of inputs that were traditionally used to ensure FeSyst will need more flexible animals. In that sense, the concepts of homeostasis and teleophorhesis need to be updated and adapted to domestic species and breeds that were until now largely excluded from the dominant productive systems. In conclusion, a more holistic approach of research targets is required in which physiological functions and farmers’ practices must converge and respond to each particular situation in an integral, dynamic and flexible conceptual perspective. From a scientific point of view, both for ICs and DCs, a broader range of experimental scenarios should be explored in order to arrive at innovative practices and solutions that respect environmental, ethical and economical issues. The clear challenge is to in evaluate the sustainability of RPSs. This includes, in our opinion, a strong interaction with other disciplines (multi- and trans-disciplinary conception), thus structuring new relevant indicators for the evaluation sustainability.

Copyright
Corresponding author
E-mail: bocquier@supagro.inra.fr
References
Hide All
Agabriel, J, Petit, M 1987. Recommandations alimentaires pour les vaches allaitantes. Bulletin Technique CRZV Theix INRA 70, 153166.
Akin, DE, Rigsby, LL, Sethuraman, A, Morrison, WH, Gamble, GR, Eriksson, KE 1995. Alterations in structure, chemistry, and biodegradability of grass lignocellulose treated with the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus. Applied and Environmental Microbiology 61, 15911598.
ARC (Agricultural Research Council) 1980. The nutrient requirements of ruminant livestock. CAB, Slough, UK, 351pp.
Archimède, H, Boval, M, Alexandre, G, Xandé, A, Aumont, G, Poncet, C 2000. Effect of regrowth age on intake and digestion of Digitaria decumbens consumed by Blackbelly sheep. Animal Feed Science and Technology 87, 153162.
Atti, N, Bocquier, F 1999. Adaptation des brebis Barbarine à l’alternance sous-nutrition-réalimentation: effets sur les tissus adipeux. Annales de Zootechnie 48, 189198.
Atti, N, Bocquier, F, Khaldi, G 2004. Performance of the fat-tailed barbarine sheep in its environment: adaptive capacity to alternation of underfeeding and re-feeding periods. A review. Animal Research 53, 165176.
Bach, A, Huntington, GB, Calsamiglia, S, Stern, MD 2000. Nitrogen metabolism of early lactation cows fed diets with two different levels of protein and different amino acid profiles. Journal of Dairy Science 83, 25852595.
Bauman, DE, Currie, WB 1980. Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. Journal of Dairy Science 63, 15141529.
Bauman, DE, Vernon, RG 1993. Effects of exogenous bovine somatotropin on lactation. Annual Review of Nutrition 13, 437461.
Beauchemin, KA, Colombatto, D, Morgavi, DP, Yang, WZ, Rode, LM 2004. Mode of action of exogenous cell wall degrading enzymes for ruminants. Canadian Journal of Animal Science 84, 1322.
Ben Salem, H, Smith, T 2008. Feeding strategies to increase small ruminant production in dry environments. Small Ruminant Research 77, 174194.
Berger, LL, Fahey, GC, Bourquin, LD, Titgemeyer, EC 1994. Modification of forage quality after harvest. In Forage cell wall structure and digestibility. In forage quality, evaluation, and utilization (ed. GC Fahey), pp. 922966. American Society of Agronomy, Madison, WI, USA.
Blake, JT, Olsen, JD, Walters, L, Lamb, RC 1982. Attaining and measuring physical fitness in dairy cattle. Journal of Dairy Science 65, 15441555.
Blanc, F, Bocquier, F, Agabriel, J, D’Hour, P, Chilliard, Y 2006. Adaptive abilities of the females and sustainability of ruminant livestock systems. A review. Animal Research 55, 489510.
Bocquier, F, Guillouet, P, Barillet, F 1995. Alimentation hivernale des brebis laitières: intérêt de la mise en lots. INRA Productions Animales 8, 1928.
Bocquier, F, Caja, G, Oregui, LM, Ferret, A, Molina, E, Barillet, F 2002. Nutrition et alimentation des brebis laitières. CIHEAM-Options Méditerranéennes, Série B Etude et recherche 42, 3755.
Bonnet, M, Leroux, C, Faulconnier, Y, Hocquette, JF, Bocquier, F, Martin, P, Chilliard, Y 2000. Lipoprotein lipase activity and mRNA are up-regulated by refeeding in adipose tissue and cardiac muscle of sheep. Journal of Nutrition 130, 749756.
Boval, M, Archimède, H, Cruz, P, Duru, M 2007. Intake and digestibility in heifers grazing a Dichanthium spp. dominated pasture, at 14 and 28 days of regrowth. Animal Feed Science and Technology 134, 1831.
Calsamiglia, S, Busquet, M, Cardozo, PW, Castillejos, L, Ferret, A 2007. Invited review: essential oils as modifiers of rumen microbial fermentation. Journal of Dairy Science 90, 25802595.
Chaucheyras-Durand, F, Walker, ND, Bach, A 2008. Effects of active dry yeasts on the rumen microbial ecosystem: past, present and future. Animal Feed Science and Technology 145, 526.
Cherney, JH, Cherney, DJR, Akin, DE, Axtell, JD 1991. Potential of brown-midrib, low-lignin mutants to improve forage quality. Advances in Agronomy 46, 157198.
Chilliard, Y 1986. Revue bibliographique: variations quantitatives et métabolisme des lipides dans les tissus adipeux et le foie au cours du cycle gestation-lactation. 1. Chez la ratte, Reproduction Nutrition and Development 26, 10571103.
Chilliard, Y 1992. Physiological constraints to milk production: factors which determine nutrient partitioning, lactation persistency, and mobilization of body reserves. World Revue of Animal Production 27, 1926.
Chilliard, Y 1993. Dietary fat and adipose tissue metabolism in ruminants, pigs and rodents: a review. Journal of Dairy Science 76, 38973931.
Chilliard, Y, Bocquier, F, Doreau, M 1998. Digestive and metabolic adaptations of ruminants to undernutrition, and consequences on reproduction. Reproduction Nutrition and Development 38, 131152.
Coulon, JB, Pradel, P, Cochard, T, Poutrel, B 1998. Extreme walking conditions for dairy cows on milk yield, chemical composition, and somatic cell count. Journal of Dairy Science 81, 9941003.
de Haan, C, Steinfeld, H, Blackburn, H 1997. Livestock and the environment. Finding a balance. European Commission Directorate General for Development. Food Agriculture Organization, Rome, Italy.
Delavaud, C, Ferlay, A, Faulconnier, Y, Bocquier, F, Kann, G, Chilliard, Y 2002. Plasma leptin concentration in adult cattle: effects of breed, adiposity, feeding level, and meal intake. Journal of Animal Science 80, 13171328.
Delgado, CL, Rosegrant, MW, Steinfeld, H, Ehui, S, Courbois, C 1999. Livestock to 2020; The next food revolution. Vision initiative food, agriculture and the environment discussion. Paper 28. International Food Policy Research Institute (IFPRI). Washington DC, USA.
Ensminger, ME, Oldfield, JE, Heinemann, WW 1990. Feeds and nutrition, 2nd edition. The Ensminger Publishing Co., Clovis, CA, USA.
Ezanno, P, Ickowicz, A, Bocquier, F 2003. Factors affecting the body condition score of N’Dama cows under extensive range management in Southern Senegal. Animal Research 52, 3748.
FAO (Food and Agriculture Organization) 2005. Pastoralism in the new millennium. Retrieved September 11, 2009, from http://www.fao.org/DOCREP/005/Y2647E/Y2647E00.HTM
FAO (Food and Agriculture Organization) 2007. The state of food and agriculture 2007: paying farmers for environmental services. FAO Agriculture Series no. 38. Rome, Italy.
FAO 2008. Grasslands of the world. Retrieved September 17, 2009, from ftp://ftp.fao.org/docrep/fao/008/y8344e/y8344e00.pdf
FAO 2009a. The state of food insecurity in the world. Retrieved November 17, 2009, from ftp://ftp.fao.org/docrep/fao/012/i0876e/i0876e.pdf
FAO 2009b. The state of agricultural commodity markets high food prices and the food crisis –experiences and lessons learned. Retrieved November 21, 2009, from ftp://ftp.fao.org/docrep/fao/012/i0854e/i0854e.pdf
FAOSTAT 2009. FAO online database. Time-series and cross sectional data relating to food and agriculture for some 200 countries. Retrieved November 21, 2009, from http://faostat.fao.org/site/573/default.aspxancor
Faverdin, P, Bareille, N 1999. Lipostatic regulation of feed intake in ruminants. In Regulation of feed intake (ed. D van der Heide, EA Huisman, E Kanis and JWM Osse), pp. 89102. CABI Publishing, Wallingford.
Ford, JA Jr, Park, CS 2001. Nutritionally directed compensatory growth enhances heifer development and lactation potential. Journal of Dairy Science 84, 16691678.
Friggens, NC 2003. Body lipid reserves and the reproductive cycle: towards a better understanding. Livestock Production Science 83, 219236.
Friggens, NC, Newbold, JR 2007. Towards a biological basis for predicting nutrient partitioning: the dairy cow as an example. Animal 1, 8797.
Friggens, NC, Disenhaus, C, Petit, HV 2010. Nutritional sub-fertility in the dairy cow: towards improve reproductive management through a better biological understanding. Animal, in press, doi:10.1017/S1751731109991601.
González-García, E, Alexandrine, Y, Silou-Etienne, T, Archimède, H 2009a. In situ degradability of conventional and unconventional starch sources for ruminants, and factors determining their washable fraction. Methodological Implications. Journal of the Science of Food and Agriculture 89, 19181926.
González-García, E, Albanell, E, Caja, G, Casals, R 2009b. In vitro fermentative characteristics of ruminant diets supplemented with fibrolytic enzymes and ranges of optimal endo-ß-1,4-glucanase activity. Journal of Animal Physiology and Animal Nutrition 94, 250263.
González-García, E, Debus, N, Chilliard, Y, Bocquier, F 2009c. Plasma leptin, feed intake and body fat reserves. An updated overview. Journal of Animal Science 87 (suppl. 2) and Journal of Dairy Science 92 (suppl. 1), 471.
Hammami, H, Rekik, B, Soyeurt, H, Bastin, C, Stoll, J, Gengler, N 2008. Genotype × environment interaction for milk yield in Holsteins using Luxembourg and Tunisian populations. Journal of Dairy Science 91, 36613671.
Hayes, BJ, Bowman, PJ, Chamberlain, AJ, Goddard, ME 2009. Genomic selection in dairy cattle: progress and challenges. Journal of Dairy Science 92, 433443.
Hoch, T, Begon, C, Cassar-Malek, I, Picard, B, Savary-Auzeloux, I 2003. Mécanismes et conséquences de la croissance compensatrice chez les ruminants. INRA Productions Animales 16, 4959.
Hodgson, J 1990. Grazing management: Science into practice. Longman handbooks in agriculture. Longman Scientific and Technical, Harlow, Essex, UK, 203pp.
Horton, GMJ 1980. Use of feed additives to reduce ruminal methane production and deaminase activity in steers. Journal of Animal Science 50, 11601164.
INRA (Institut National de Recherche Agronomique) 1988. Alimentation des bovins, ovins et caprins (ed. R. Jarrige), pp. 471. INRA Editions, Versailles, France.
IPCC (Intergovernmental Panel on Climate Change) 2001. Climate change 2001: the scientific basis. In Contribution of Working Group I to the 3rd Assessment Report of the Intergovernmental Panel on Climate Change (ed. RT Watson and the Core Writing Team), pp. 398. Cambridge University Press, Cambridge, UK.
Johnson, DE, Johnson, KA, Ward, GM, Branine, ME 2000. Ruminants and other animals. In Atmospheric methane: its role in the global environment (ed. MAK Khalil), pp. 112133. Springer-Verlag, Berlin, Heidelberg, Germany.
Johnson, KA, Johnson, DE 1995. Methane emissions from cattle. Journal of Animal Science 73, 24832492.
Kebreab, E, Dijkstra, J, Bannink, A, France, J 2009. Recent advances in modeling nutrient utilization in ruminants. Journal of Animal Science 87 (E. Suppl.), E111E122.
Kharrat, M, Bocquier, F 2010. Impact of indoor feeding at late lactation stage on body reserves recovery and reproductive performances of Baladi dairy goats fed on pastoral system. Small Ruminant Research 90, 127134.
Krause, DO, Denman, SE, Mackie, RI, Morrison, M, Rae, AL, Attwood, GT, McSweeney, CS 2003. Opportunities to improve fibre degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiology Reviews 27, 663693.
Kucuk, O, Hess, BW, Rule, DC 2004. Soybean oil supplementation of a high-concentrate diet does not affect site and extent of organic matter, starch, neutral detergent fiber, or nitrogen digestion, but influences both ruminal metabolism and intestinal flow of fatty acids in limit-fed lambs. Journal of Animal Science 82, 29852994.
Makkar, HPS 2003. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Ruminant Research 49, 241256.
Martin, GB, Milton, JTB, Davidson, RH, Banchero Hunzicker, GE, Lindsay, DR, Blache, D 2004. Natural methods for increasing reproductive efficiency in small ruminants. Animal Reproduction Science 82–83, 231246.
Maurício, RM, Sousa, LF, Moreira, GR, Reis, GL, Gonçalvez, LC 2008. Silvopastoral systems as a sustainable alternative to animal production in the tropics. Conference at the International Workshop “New Opportunities for Dairy and Dual Purpose Ruminant Systems in Latin America: Resource Management, Product Safety, Quality and Market Access”, Ixtapan de la Sal, Mexico, pp. 187–199.
Mayer, AM, Staples, RC 2002. Laccase: new functions for an old enzyme. Phytochemistry 60, 551565.
McAllister, TA, Hristov, AN, Beauchemin, KA, Rode, LM, Cheng, KJ 2001. Enzymes in ruminant diets. In Enzymes in farm animal nutrition (ed. M Bedford and G Partridge), pp. 273298. CABI Publishing, Oxon, UK.
Miglior, F, Muir, BL, Van Doormaal, BJ 2005. Selection indices in Holstein cattle of various countries. Journal of Dairy Science 88, 12551263.
Molina-Alcaide, E, Yáñez-Ruiz, DR 2008. Potential use of olive by-products in ruminant feeding: a review. Animal Feed Science and Technology 147, 247264.
Niderkorn, V, Baumont, R 2009. Associative effects between forages on feed intake and digestion in ruminants. Animal 3, 951960.
NRC (National Research Council) 2001. Nutrient requirements of dairy cattle, 7th revised edition. National Academy Press, Washington DC, USA.
Nussio, LG, Ribeiro, JL 2008. Forage conservation in tropical zones: potential and limitations of grass silages in South America. In Conference on Multifunctional Grasslands in a Changing World, vol. 2, 21st International Grassland Congress and 8th International Rangeland Congress, Hohhot, China, 29 June–5 July. pp. 644–649.
OECD-FAO (Organissation de coopération et de développement économiques – Food Agriculture Organization) 2008. OECD-FAO agricultural outlook 2008–2017. Perspectives agricoles de l’OCDE et de la FAO 2008–2017. 73pp.
Orosz, S, Szcsné-Péter, J, Owens, V, Bellus, Z 2008. Recent developments in harvesting and conservation technology for feed and biomass production of perennial forage crops. Conference on Biodiversity and animal feed: future challenges for grassland production. Proceedings of the 22nd General Meeting of the European Grassland Federation (ed. A Hopkins, T Gustafsson, J Bertilsson, G Dalin, N Nilsdotter-Linde and E Spörndly), pp. 529–548. Uppsala, Sweden.
Preston, TR 1986. Better utilization of crop residues and by-products in animal feeding: research guidelines. A practical manual for research workers. FAO, Rome, Italy.
Preston, TR 2009. Environmentally sustainable production of food, feed and fuel from natural resources in the tropics. Tropical Animal Health and Production 41, 873882.
Reed, JD 1995. Nutritional toxicology of tannins and related polyphenols in forage legumes. Journal of Animal Science 73, 15161528.
Robinson, JJ, Ashworth, CJ, Rooke, JA, Mitchell, LM, McEvoy, TG 2006. Nutrition and fertility in ruminant livestock. Animal Feed Science and Technology 126, 259276.
Sewalt, VJH, Beauchemin, KA, Rode, LM, Acharya, S, Baron, VS 1997. Lignin impact on fiber degradation. IV. Enzymatic saccharification and in vitro digestibility of alfalfa and grasses following selective solvent delignification. Bioresource Technology 61, 199206.
Steinfeld, H, Gerber, P, Wassenaar, T, Castel, V, Rosales, M, de Haan, C 2006. Livestock’s long shadow: environmental issues and options. FAO, Rome, Italy.
Somchit, A, Campbell, BK, Khalid, M, Kendall, NR, Scaramuzzi, RJ 2007. The effect of short-term nutritional supplementation of ewes with lupin grain (Lupinus luteus), during the luteal phase of the estrous cycle on the number of ovarian follicles and the concentrations of hormones and glucose in plasma and follicular fluid. Theriogenology 68, 10371046.
Sun, Y, Cheng, J 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 83, 111.
Tamminga, S 1996. A review on environmental impacts of nutritional strategies in ruminants. Journal of Animal Science 74, 31123124.
Thatcher, WW 1974. Effects of season, climate, and temperature on reproduction and lactation. Journal of Dairy Science 57, 360368.
The World Bank 2009. Minding the stock. Bringing public policy to bear on livestock sector development. The World Bank. Report no. 44010-GLB. The International Bank for Reconstruction and Development/The World Bank, Washington DC, USA.
Thorpe, A 2009. Enteric fermentation and ruminant eructation: the role (and control?) of methane in the climate change debate. Climatic Change 93, 407431.
Tillard, E, Humblot, P, Faye, B, Lecomte, P, Dohoo, I, Bocquier, F 2007. Precalving factors affecting conception risk in Holstein dairy cows in tropical conditions. Theriogenology 68, 567581.
Tillard, E, Humblot, P, Faye, B, Lecomte, P, Dohoo, I, Bocquier, F 2008. Postcalving factors affecting conception risk in Holstein dairy cows in tropical and sub-tropical conditions. Theriogenology 69, 443457.
Tolkamp, BJ, Emmans, GC, Kyriazakis, I 2006. Body fatness affects feed intake of sheep at a given body weight. Journal of Animal Science 84, 17781789.
Turner, SR, Taylor, N, Jones, L 2001. Mutations of the secondary cell wall. Plant Molecular Biology 47, 209219.
UNCCC 2009. The 15th United Nations Climate Change Conference (COP15) of Copenhagen. Retrieved December 21, 2009, from http://en.cop15.dk/
Varga, GA, Kolver, ES 1997. Microbial and animal limitations to fibre digestion and utilization. The Journal of Nutrition 127, 819S823S.
Vasta, V, Nudda, A, Cannas, A, Lanza, M, Priolo, A 2008. Alternative feed resources and their effects on the quality of meat and milk from small ruminants. Animal Feed Science and Technology 147, 223246.
Vinolesa, C, Meikle, A, Martin, GB 2009. Short-term nutritional treatments grazing legumes or feeding concentrates increase prolificacy in Corriedale ewes. Animal Reproduction Science 113, 8292.
Waghorn, GC, Clark, DA 2006. Greenhouse gas mitigation opportunities with immediate application to pastoral grazing for ruminants. International Congress Series 1293, 107110.
West, JW 2003. Effects of heat-stress on production in dairy cattle. Journal of Dairy Science 86, 21312144.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

animal
  • ISSN: 1751-7311
  • EISSN: 1751-732X
  • URL: /core/journals/animal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed