Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-w6k7h Total loading time: 0.248 Render date: 2022-06-25T10:27:47.805Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

REGULARITY OF SOLUTIONS TO A TIME-FRACTIONAL DIFFUSION EQUATION

Published online by Cambridge University Press:  18 July 2011

WILLIAM MCLEAN*
Affiliation:
School of Mathematics and Statistics, The University of New South Wales, Sydney 2052, Australia (email: w.mclean@unsw.edu.au)
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove estimates for the partial derivatives of the solution to a time-fractional diffusion equation posed over a bounded spatial domain. Such estimates are needed for the analysis of effective numerical methods, particularly since the solution is typically less regular than in the familiar case of classical diffusion.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2011

References

[1]Cuesta, E., Lubich, C. and Palencia, C., “Convolution quadrature time discretization of fractional diffusion-wave equations”, Math. Comp. 75 (2006) 673696, doi:10.1090/S0025-5718-06-01788-1.CrossRefGoogle Scholar
[2]Erdelyi, A., Higher transcendental functions, Volume 3 (McGraw-Hill, New York, 1955).Google Scholar
[3]Golding, I. and Cox, E. C., “Physical nature of bacterial cytoplasm”, Phys. Rev. Lett. 96 (2006) 098102, doi:10.1103/PhysRevLett.96.098102.CrossRefGoogle ScholarPubMed
[4]Gorenflo, R., Loutchko, J. and Luchko, Y., “Computation of the Mittag-Leffler function E α,β(z) and its derivative”, Fract. Calc. Appl. Anal. 5 (2002) 491518, and correction 6 (2003) 111–112.Google Scholar
[5]Grebenkov, D. S., “Subdiffusion in a bounded domain with a partially absorbing-reflecting boundary”, Phys. Rev. E 81 (2010) 021128, doi:10.1103/PhysRevE.81.021128.CrossRefGoogle Scholar
[6]Henry, B. I. and Wearne, S. L., “Fractional reaction-diffusion”, Phys. A 276 (2000) 448455.Google Scholar
[7]Mainardi, F., Mura, A. and Pagnini, G., “The M-Wright function in time-fractional diffusion processes: a tutorial survey”, Int. J. Differ. Equ. (2010) Article ID 104505, 29, doi:10.1155/2010/104505.Google Scholar
[8]McLean, W. and Mustapha, K., “A second-order accurate numerical method for a fractional wave equation”, Numer. Math. 105 (2007) 481510, doi:10.1007/s00211-006-0045-y.CrossRefGoogle Scholar
[9]McLean, W. and Mustapha, K., “Convergence analysis of a discontinuous Galerkin method for a fractional diffusion equation”, Numer. Algorithms 52 (2009) 6988, doi:10.1007/s11075-008-9258-8.CrossRefGoogle Scholar
[10]McLean, W. and Thomée, V., “Numerical solution of an evolution equation with a positive-type memory term”, J. Aust. Math. Soc. Ser. B 35 (1993) 2370, doi:10.1017/S0334270000007268.CrossRefGoogle Scholar
[11]McLean, W. and Thomée, V., “Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation”, IMA J. Numer. Anal. 30 (2010) 208230, doi:10.1093/imanum/drp004.CrossRefGoogle Scholar
[12]Metzler, R. and Klafter, J., “The random walk’s guide to anomalous diffusion: a fractional dynamics approach”, Phys. Rep. 339 (2000) 177, doi:10.1016/S0370-1573(00)00070-3.CrossRefGoogle Scholar
[13]Metzler, R. and Klafter, J., “Boundary value problems for fractional diffusion equations”, Phys. A 278 (2000) 107125, doi:10.1016/S0378-4371(99)00503-8.Google Scholar
[14]Mustapha, K. and McLean, W., “Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation”, Numer. Algorithms 56 (2011) 159184, doi:10.1007/s11075-010-9379-8.CrossRefGoogle Scholar
[15]Thomée, V., Galerkin finite element methods for parabolic problems, Volume 1054 of Lecture Notes in Mathematics (Springer, Berlin, 1984).Google Scholar
[16]Triebel, H., Interpolation theory, function spaces, differential operators (Johann Ambrosius Barth, Heidelberg, 1995).Google Scholar
You have Access
81
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

REGULARITY OF SOLUTIONS TO A TIME-FRACTIONAL DIFFUSION EQUATION
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

REGULARITY OF SOLUTIONS TO A TIME-FRACTIONAL DIFFUSION EQUATION
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

REGULARITY OF SOLUTIONS TO A TIME-FRACTIONAL DIFFUSION EQUATION
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *